神经网络输出中间特征图

在进行神经网络的训练过程中,会生成不同的特征图信息,这些特征图中包含大量图像信息,如轮廓信息,细节信息等,然而,我们一般只获取最终的输出结果,至于中间的特征图则很少关注。

前两天师弟突然问起了这个问题,但我也没有头绪,后来和师弟研究了一下,大概有了一个思路。

即每个特征提取模块都会输出一个特征图,这些特征图的每个像素实际上就是一些数值,那么只需要将这些数值保存,再以图像的形式展现出来便OK了。

基于这个思路,我们来进行设计。在观测输出的特征图时,我们可以使用推理代码来进行输出,因为推理时所消耗的资源较少且推理时可以很明确我们输入的图像是什么。

至于要想实现的效果:

原图:

输出的特征图:

那么该如何进行呢?

首先是要明确你要输出哪个阶段的特征图像,博主分别选择了主干网络四个阶段的输出结果,输出的特征图大小分别为:

python 复制代码
x的shape: torch.Size([1, 64, 200, 300])
x的shape: torch.Size([1, 128, 100, 150])
x的shape: torch.Size([1, 320, 50, 75])
x的shape: torch.Size([1, 512, 25, 38])

代码实现

在要输出特征图的模块后面讲特征图保存为numpy的格式:

python 复制代码
sb = x.cpu().data.numpy()
np.save('matric'+str(i)+'.npy', sb)#这里的i是对应四个阶段的id

读取numpy格式数据并转换为特征图:

python 复制代码
import numpy as np
import os
import matplotlib.pyplot as plt
import torch
import torch.nn as nn

def normalization(data):  # NORMALIZE TO [0,1]
    _range = np.max(data) - np.min(data)
    data = (data - np.min(data)) / _range  # [0,1]
    return data

def fm_vis(feats, save_dir, save_name):
    save_dir = os.path.join(save_dir, save_name)
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)

    feats = normalization(feats[0].cpu().data.numpy())
    for idx in range(min(feats.shape[0], 200*300)):  # CHANNLE NUMBER
        fms = feats[idx, :, :]
        plt.imshow(fms)
        plt.savefig(os.path.join(save_dir, save_name + '_' + str(idx) + ".png"))
        
for i in range(0,4):
    s_b1 = np.load('matric'+str(i)+'.npy')
    print(s_b1)
    s_b2 = torch.from_numpy(s_b1)
    out_dir = "outputs"
    s_b = s_b2.reshape(1, 64, 200, 300)
    fm_vis(s_b, out_dir, "s_b_vis"+str(i))

最终结果:输出四个阶段的特征图,博主选了其中几张:



相关推荐
软件聚导航5 分钟前
马年、我用AI写了个“打工了马” 小程序
人工智能·ui·微信小程序
陈天伟教授1 小时前
人工智能应用-机器听觉:7. 统计合成法
人工智能·语音识别
笨蛋不要掉眼泪1 小时前
Spring Boot集成LangChain4j:与大模型对话的极速入门
java·人工智能·后端·spring·langchain
昨夜见军贴06161 小时前
IACheck AI审核技术赋能消费认证:为智能宠物喂食器TELEC报告构筑智能合规防线
人工智能·宠物
DisonTangor2 小时前
阿里开源语音识别模型——Qwen3-ASR
人工智能·开源·语音识别
万事ONES2 小时前
ONES 签约北京高级别自动驾驶示范区专设国有运营平台——北京车网
人工智能·机器学习·自动驾驶
qyr67892 小时前
深度解析:3D细胞培养透明化试剂供应链与主要制造商分布
大数据·人工智能·3d·市场分析·市场报告·3d细胞培养·细胞培养
软件开发技术深度爱好者2 小时前
浅谈人工智能(AI)对个人发展的影响
人工智能
一路向北he2 小时前
esp32 arduino环境的搭建
人工智能
SmartBrain2 小时前
Qwen3-VL 模型架构及原理详解
人工智能·语言模型·架构·aigc