神经网络输出中间特征图

在进行神经网络的训练过程中,会生成不同的特征图信息,这些特征图中包含大量图像信息,如轮廓信息,细节信息等,然而,我们一般只获取最终的输出结果,至于中间的特征图则很少关注。

前两天师弟突然问起了这个问题,但我也没有头绪,后来和师弟研究了一下,大概有了一个思路。

即每个特征提取模块都会输出一个特征图,这些特征图的每个像素实际上就是一些数值,那么只需要将这些数值保存,再以图像的形式展现出来便OK了。

基于这个思路,我们来进行设计。在观测输出的特征图时,我们可以使用推理代码来进行输出,因为推理时所消耗的资源较少且推理时可以很明确我们输入的图像是什么。

至于要想实现的效果:

原图:

输出的特征图:

那么该如何进行呢?

首先是要明确你要输出哪个阶段的特征图像,博主分别选择了主干网络四个阶段的输出结果,输出的特征图大小分别为:

python 复制代码
x的shape: torch.Size([1, 64, 200, 300])
x的shape: torch.Size([1, 128, 100, 150])
x的shape: torch.Size([1, 320, 50, 75])
x的shape: torch.Size([1, 512, 25, 38])

代码实现

在要输出特征图的模块后面讲特征图保存为numpy的格式:

python 复制代码
sb = x.cpu().data.numpy()
np.save('matric'+str(i)+'.npy', sb)#这里的i是对应四个阶段的id

读取numpy格式数据并转换为特征图:

python 复制代码
import numpy as np
import os
import matplotlib.pyplot as plt
import torch
import torch.nn as nn

def normalization(data):  # NORMALIZE TO [0,1]
    _range = np.max(data) - np.min(data)
    data = (data - np.min(data)) / _range  # [0,1]
    return data

def fm_vis(feats, save_dir, save_name):
    save_dir = os.path.join(save_dir, save_name)
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)

    feats = normalization(feats[0].cpu().data.numpy())
    for idx in range(min(feats.shape[0], 200*300)):  # CHANNLE NUMBER
        fms = feats[idx, :, :]
        plt.imshow(fms)
        plt.savefig(os.path.join(save_dir, save_name + '_' + str(idx) + ".png"))
        
for i in range(0,4):
    s_b1 = np.load('matric'+str(i)+'.npy')
    print(s_b1)
    s_b2 = torch.from_numpy(s_b1)
    out_dir = "outputs"
    s_b = s_b2.reshape(1, 64, 200, 300)
    fm_vis(s_b, out_dir, "s_b_vis"+str(i))

最终结果:输出四个阶段的特征图,博主选了其中几张:



相关推荐
Katecat99663几秒前
基于YOLOv8-Slimneck-WFU模型的苹果目标检测实现
人工智能·yolo·目标检测
Piar1231sdafa几秒前
FCOS模型优化实战:基于R50-DCN-Caffe的FPN_GN检测头中心点回归与GIoU损失函数实现
人工智能·回归·caffe
世岩清上1 分钟前
智能算法与边缘计算融合:驱动下一代实时决策系统的技术范式革新
人工智能·边缘计算
YIFAN.WANG5 分钟前
AI中的优化7-有约束非线性规划
人工智能·机器学习·支持向量机
咚咚王者2 小时前
人工智能之数学基础 线性代数:第三章 特征值与特征向量
人工智能·线性代数·机器学习
g***B7384 小时前
Java 工程复杂性的真正来源:从语言设计到现代架构的全链路解析
java·人工智能·架构
Shawn_Shawn7 小时前
大模型的奥秘:Token与Transformer简单理解
人工智能·llm
weixin_377634848 小时前
【K-S 检验】Kolmogorov–Smirnov计算过程与示例
人工智能·深度学习·机器学习
菜鸟起航ing9 小时前
Spring AI 全方位指南:从基础入门到高级实战
java·人工智能·spring
Guheyunyi9 小时前
智慧消防管理系统如何重塑安全未来
大数据·运维·服务器·人工智能·安全