神经网络输出中间特征图

在进行神经网络的训练过程中,会生成不同的特征图信息,这些特征图中包含大量图像信息,如轮廓信息,细节信息等,然而,我们一般只获取最终的输出结果,至于中间的特征图则很少关注。

前两天师弟突然问起了这个问题,但我也没有头绪,后来和师弟研究了一下,大概有了一个思路。

即每个特征提取模块都会输出一个特征图,这些特征图的每个像素实际上就是一些数值,那么只需要将这些数值保存,再以图像的形式展现出来便OK了。

基于这个思路,我们来进行设计。在观测输出的特征图时,我们可以使用推理代码来进行输出,因为推理时所消耗的资源较少且推理时可以很明确我们输入的图像是什么。

至于要想实现的效果:

原图:

输出的特征图:

那么该如何进行呢?

首先是要明确你要输出哪个阶段的特征图像,博主分别选择了主干网络四个阶段的输出结果,输出的特征图大小分别为:

python 复制代码
x的shape: torch.Size([1, 64, 200, 300])
x的shape: torch.Size([1, 128, 100, 150])
x的shape: torch.Size([1, 320, 50, 75])
x的shape: torch.Size([1, 512, 25, 38])

代码实现

在要输出特征图的模块后面讲特征图保存为numpy的格式:

python 复制代码
sb = x.cpu().data.numpy()
np.save('matric'+str(i)+'.npy', sb)#这里的i是对应四个阶段的id

读取numpy格式数据并转换为特征图:

python 复制代码
import numpy as np
import os
import matplotlib.pyplot as plt
import torch
import torch.nn as nn

def normalization(data):  # NORMALIZE TO [0,1]
    _range = np.max(data) - np.min(data)
    data = (data - np.min(data)) / _range  # [0,1]
    return data

def fm_vis(feats, save_dir, save_name):
    save_dir = os.path.join(save_dir, save_name)
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)

    feats = normalization(feats[0].cpu().data.numpy())
    for idx in range(min(feats.shape[0], 200*300)):  # CHANNLE NUMBER
        fms = feats[idx, :, :]
        plt.imshow(fms)
        plt.savefig(os.path.join(save_dir, save_name + '_' + str(idx) + ".png"))
        
for i in range(0,4):
    s_b1 = np.load('matric'+str(i)+'.npy')
    print(s_b1)
    s_b2 = torch.from_numpy(s_b1)
    out_dir = "outputs"
    s_b = s_b2.reshape(1, 64, 200, 300)
    fm_vis(s_b, out_dir, "s_b_vis"+str(i))

最终结果:输出四个阶段的特征图,博主选了其中几张:



相关推荐
2501_94198205几秒前
结合 AI 视觉:使用 OCR 识别企业微信聊天记录中的图片信息
人工智能·ocr·企业微信
事变天下16 分钟前
肾尚科技完成新一轮融资,加速慢性肾脏病(CKD)精准化管理闭环渗透
大数据·人工智能
GEO AI搜索优化助手17 分钟前
范式革命——从“关键词”到“意图理解”,搜索本质的演进与重构
人工智能·搜索引擎·生成式引擎优化·ai优化·geo搜索优化
大刘讲IT19 分钟前
2025年企业级 AI Agent 标准化落地深度年度总结:从“对话”到“端到端价值闭环”的范式重构
大数据·人工智能·程序人生·ai·重构·制造
2301_8234380226 分钟前
【无标题】解析《采用非对称自玩实现强健多机器人群集的深度强化学习方法》
数据库·人工智能·算法
沛沛老爹28 分钟前
Web开发者快速上手AI Agent:提示词应用优化实战
人工智能·ai·agent·提示词·rag·入门知识
中国胖子风清扬30 分钟前
SpringAI和 Langchain4j等 AI 框架之间的差异和开发经验
java·数据库·人工智能·spring boot·spring cloud·ai·langchain
极度畅想31 分钟前
脑电模型实战系列(三):DEAP 数据集处理与 Russell 环状模型实战(一)
深度学习·特征提取·情感计算·脑机接口 bci·deap数据集
Dev7z34 分钟前
基于Stanley算法的自动驾驶车辆路径跟踪控制研究
人工智能·机器学习·自动驾驶
Java后端的Ai之路40 分钟前
【分析式AI】-过拟合(含生活案例说明)
人工智能·aigc·生活·过拟合·分析式ai