【Python】pytorch,CUDA是否可用,查看显卡显存剩余容量

CUDA可用,共有 1 个GPU设备可用。

当前使用的GPU设备索引:0

当前使用的GPU设备名称:NVIDIA T1000

GPU显存总量:4.00 GB

已使用的GPU显存:0.00 GB

剩余GPU显存:4.00 GB

PyTorch版本:1.10.1+cu102

python 复制代码
import torch

# 检查CUDA是否可用
cuda_available = torch.cuda.is_available()

if cuda_available:
    # 获取GPU设备数量
    num_gpu = torch.cuda.device_count()

    # 获取当前使用的GPU索引
    current_gpu_index = torch.cuda.current_device()

    # 获取当前GPU的名称
    current_gpu_name = torch.cuda.get_device_name(current_gpu_index)

    # 获取GPU显存的总量和已使用量
    total_memory = torch.cuda.get_device_properties(current_gpu_index).total_memory / (1024 ** 3)  # 显存总量(GB)
    used_memory = torch.cuda.memory_allocated(current_gpu_index) / (1024 ** 3)  # 已使用显存(GB)
    free_memory = total_memory - used_memory  # 剩余显存(GB)

    print(f"CUDA可用,共有 {num_gpu} 个GPU设备可用。")
    print(f"当前使用的GPU设备索引:{current_gpu_index}")
    print(f"当前使用的GPU设备名称:{current_gpu_name}")
    print(f"GPU显存总量:{total_memory:.2f} GB")
    print(f"已使用的GPU显存:{used_memory:.2f} GB")
    print(f"剩余GPU显存:{free_memory:.2f} GB")
else:
    print("CUDA不可用。")

# 检查PyTorch版本
print(f"PyTorch版本:{torch.__version__}")

windows先装显卡驱动,再装CUDA10.2,最后装了pytorch。

pip install torch1.10.1+cu102 torchvision0.13.1+cu102 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu102

相关推荐
测试19983 分钟前
软件测试之压力测试
自动化测试·软件测试·python·测试工具·职场和发展·测试用例·压力测试
Swizard7 分钟前
极限瘦身:将 Python AI 应用从 100MB 砍到 30MB
java·python·ai·移动开发
编织幻境的妖13 分钟前
Python代码性能优化工具与方法
开发语言·python·性能优化
Rookie_JE30 分钟前
python docxtpl库学习
python
我不是小upper32 分钟前
CNN+BiLSTM !!最强序列建模组合!!!
人工智能·python·深度学习·神经网络·cnn
锐学AI38 分钟前
从零开始学MCP(四)- 认识MCP clients
人工智能·python
爱打代码的小林1 小时前
python基础(pandas库)
服务器·python·pandas
shenzhenNBA1 小时前
如何在python文件中使用日志功能?简单版本
java·前端·python·日志·log
编织幻境的妖1 小时前
Python垃圾回收机制详解
开发语言·python