【Python】pytorch,CUDA是否可用,查看显卡显存剩余容量

CUDA可用,共有 1 个GPU设备可用。

当前使用的GPU设备索引:0

当前使用的GPU设备名称:NVIDIA T1000

GPU显存总量:4.00 GB

已使用的GPU显存:0.00 GB

剩余GPU显存:4.00 GB

PyTorch版本:1.10.1+cu102

python 复制代码
import torch

# 检查CUDA是否可用
cuda_available = torch.cuda.is_available()

if cuda_available:
    # 获取GPU设备数量
    num_gpu = torch.cuda.device_count()

    # 获取当前使用的GPU索引
    current_gpu_index = torch.cuda.current_device()

    # 获取当前GPU的名称
    current_gpu_name = torch.cuda.get_device_name(current_gpu_index)

    # 获取GPU显存的总量和已使用量
    total_memory = torch.cuda.get_device_properties(current_gpu_index).total_memory / (1024 ** 3)  # 显存总量(GB)
    used_memory = torch.cuda.memory_allocated(current_gpu_index) / (1024 ** 3)  # 已使用显存(GB)
    free_memory = total_memory - used_memory  # 剩余显存(GB)

    print(f"CUDA可用,共有 {num_gpu} 个GPU设备可用。")
    print(f"当前使用的GPU设备索引:{current_gpu_index}")
    print(f"当前使用的GPU设备名称:{current_gpu_name}")
    print(f"GPU显存总量:{total_memory:.2f} GB")
    print(f"已使用的GPU显存:{used_memory:.2f} GB")
    print(f"剩余GPU显存:{free_memory:.2f} GB")
else:
    print("CUDA不可用。")

# 检查PyTorch版本
print(f"PyTorch版本:{torch.__version__}")

windows先装显卡驱动,再装CUDA10.2,最后装了pytorch。

pip install torch1.10.1+cu102 torchvision0.13.1+cu102 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu102

相关推荐
文火冰糖的硅基工坊5 分钟前
[人工智能-大模型-72]:模型层技术 - 模型训练六大步:①数据预处理 - 基本功能与对应的基本组成函数
开发语言·人工智能·python
Python×CATIA工业智造2 小时前
Pycatia二次开发基础代码解析:组件识别、选择反转与链接创建技术解析
python·pycharm
小宁爱Python2 小时前
从零搭建 RAG 智能问答系统 6:Text2SQL 与工作流实现数据库查询
数据库·人工智能·python·django
m0_748241232 小时前
Java注解与反射实现日志与校验
java·开发语言·python
可触的未来,发芽的智生3 小时前
追根索源:换不同的词嵌入(词向量生成方式不同,但词与词关系接近),会出现什么结果?
javascript·人工智能·python·神经网络·自然语言处理
hu_nil3 小时前
LLMOps-第十一周作业
python·vllm
kyle-fang3 小时前
pytorch-损失函数
pytorch
Tiandaren3 小时前
自用提示词01 || Prompt Engineering || 学习路线大纲 || 作用:通过启发式的问题来带动学习
人工智能·pytorch·深度学习·nlp·prompt·1024程序员节
阿Q说代码3 小时前
IPIDEA实现数据采集自动化:高效自动化采集方案
运维·python·自动化·数据采集
大模型真好玩4 小时前
OCR技术简史: 从深度学习到大模型,最强OCR大模型花落谁家
人工智能·python·deepseek