基于大规模测量和多任务深度学习的电子鼻系统目标识别、浓度预测和状态判断

Target discrimination, concentration prediction, and status judgment of electronic nose system based on large-scale measurement and multi-task deep learning

摘要

为了实现响应特征的自动提取,简化模型的训练和应用过程,设计了一种双块知识共享结构的多任务卷积神经网络(MTL-CNN)来训练E-nose系统的模型。该模型可以同时执行三种不同的分类任务,用于目标识别、浓度预测和状态判断。

使用值为RA/RG (RA在空气中的电阻值,RG为在目标气体中的电阻值,消除飘移)

网络模型

Selective Detection of Mixtures via a Single Nonselective Sensor---Making the Unworkable Sensor Workable by Machine Learning

目的:利用一个非选择性传感器对二元混合气体的浓度进行预测,即将重叠信号分离

流程:

响应数据(1D)---》64个GRU(64D)----》对各个时间段的数据进行GRU处理 ----》降维(8D)---》输出(2D)得到各部分气体浓度

验证出信号的重叠响应是有规律的,并不是随机过程

改进:在GRU之后添加注意力机制,更深入获取之前信息

相关推荐
海边夕阳20065 小时前
【每天一个AI小知识】:什么是生成对抗网络?
人工智能·经验分享·深度学习·神经网络·机器学习·生成对抗网络
Wise玩转AI5 小时前
Day 27|智能体的 UI 与用户交互层
人工智能·python·ui·ai·chatgpt·ai智能体
youcans_6 小时前
【youcans论文精读】VM-UNet:面向医学图像分割的视觉 Mamba UNet 架构
论文阅读·人工智能·计算机视觉·图像分割·状态空间模型
铮铭6 小时前
扩散模型简介:The Annotated Diffusion Model
人工智能·机器人·强化学习·世界模型
轻竹办公PPT6 小时前
轻竹论文:毕业论文AI写作教程
人工智能·ai·ai写作
呵呵哒( ̄▽ ̄)"6 小时前
专项智能练习(课程类型)
人工智能
2501_918126917 小时前
如何用ai把特定领域的生活成本归零
人工智能·生活·个人开发
Brianna Home7 小时前
[鸿蒙2025领航者闯关] 鸿蒙 6.0 星盾安全架构 + AI 防窥:金融级支付安全实战与深度踩坑实录
人工智能·安全·harmonyos·安全架构
飞哥数智坊8 小时前
V4/R4 没来,但 DeepSeek-V3.2 好像又便宜又好用?
人工智能·deepseek