ChatGPT Prompting开发实战(五)

一、如何编写有效的prompt

对于大语言模型来说,编写出有效的prompt能够帮助模型更好地理解用户的意图(intents),生成针对用户提问来说是有效的答案,避免用户与模型之间来来回回对话多次但是用户不能从LLM那里得到有意义的反馈。本文通过具体案例演示解析两个能够帮助写出有效的prompts的基本原则。案例使用来自OpenAI的模型"gpt-3.5-turbo"并调用相关的chat API:

二、编写清晰和有具体的指令(instructions)的prompt

要点描述:

使用分割符来清楚标明模型输入的不同部分,可以使用的分割符包括:```, """, < >, <tag> </tag>, :等等。

prompt示例如下:

text = f"""

You should express what you want a model to do by \

providing instructions that are as clear and \

specific as you can possibly make them. \

This will guide the model towards the desired output, \

and reduce the chances of receiving irrelevant \

or incorrect responses. Don't confuse writing a \

clear prompt with writing a short prompt. \

In many cases, longer prompts provide more clarity \

and context for the model, which can lead to \

more detailed and relevant outputs.

"""

prompt = f"""

Summarize the text delimited by triple backticks \

into a single sentence.

```{text}```

"""

response = get_completion(prompt)

print(response)

打印输出结果如下:

To guide a model towards the desired output and reduce irrelevant or incorrect responses, it is important to provide clear and specific instructions, which can be achieved through longer prompts that offer more clarity and context.

要点描述:

如何请求LLM给出一个结构化的输出,常见的结构化输出格式有JSON,HTML等。

prompt示例如下:

prompt = f"""

Generate a list of three made-up book titles along \

with their authors and genres.

Provide them in JSON format with the following keys:

book_id, title, author, genre.

"""

response = get_completion(prompt)

print(response)

打印输出结果如下:

要点描述:

请求模型检查输入文本是否满足给定的条件。

prompt示例如下(能够满足给定条件):

text_1 = f"""

Making a cup of tea is easy! First, you need to get some \

water boiling. While that's happening, \

grab a cup and put a tea bag in it. Once the water is \

hot enough, just pour it over the tea bag. \

Let it sit for a bit so the tea can steep. After a \

few minutes, take out the tea bag. If you \

like, you can add some sugar or milk to taste. \

And that's it! You've got yourself a delicious \

cup of tea to enjoy.

"""

prompt = f"""

You will be provided with text delimited by triple quotes.

If it contains a sequence of instructions, \

re-write those instructions in the following format:

Step 1 - ...

Step 2 - ...

...

Step N - ...

If the text does not contain a sequence of instructions, \

then simply write \"No steps provided.\"

\"\"\"{text_1}\"\"\"

"""

response = get_completion(prompt)

print("Completion for Text 1:")

print(response)

打印输出结果如下:

prompt示例如下(不能满足给定条件):

text_2 = f"""

The sun is shining brightly today, and the birds are \

singing. It's a beautiful day to go for a \

walk in the park. The flowers are blooming, and the \

trees are swaying gently in the breeze. People \

are out and about, enjoying the lovely weather. \

Some are having picnics, while others are playing \

games or simply relaxing on the grass. It's a \

perfect day to spend time outdoors and appreciate the \

beauty of nature.

"""

prompt = f"""

You will be provided with text delimited by triple quotes.

If it contains a sequence of instructions, \

re-write those instructions in the following format:

Step 1 - ...

Step 2 - ...

...

Step N - ...

If the text does not contain a sequence of instructions, \

then simply write \"No steps provided.\"

\"\"\"{text_2}\"\"\"

"""

response = get_completion(prompt)

print("Completion for Text 2:")

print(response)

打印输出结果如下:

相关推荐
星辰生活说19 分钟前
理想树图书:以科技赋能教育,开启AI时代自主学习新范式
人工智能·科技·学习
说私域27 分钟前
定制开发开源AI智能名片S2B2C商城小程序:数字营销时代的话语权重构
人工智能·小程序·开源·零售
武子康32 分钟前
大数据-274 Spark MLib - 基础介绍 机器学习算法 剪枝 后剪枝 ID3 C4.5 CART
大数据·人工智能·算法·机器学习·语言模型·spark-ml·剪枝
彭祥.42 分钟前
安全帽目标检测
人工智能·目标检测·目标跟踪
DisonTangor1 小时前
【小米拥抱AI】小米开源 MiMo-7B-RL-0530
人工智能
理***所2 小时前
湖北理元理律师事务所:用科学规划重塑债务人生
人工智能
文莉wenliii3 小时前
打卡day41
人工智能·深度学习
Lilith的AI学习日记3 小时前
n8n 中文系列教程_25.在n8n中调用外部Python库
开发语言·人工智能·python·机器学习·chatgpt·ai编程·n8n
说私域3 小时前
基于开源AI大模型AI智能名片S2B2C商城小程序源码的私域流量运营与内容定位策略研究
人工智能·小程序·开源·产品运营·流量运营·零售
pen-ai3 小时前
【深度学习】16. Deep Generative Models:生成对抗网络(GAN)
人工智能·深度学习·生成对抗网络