ChatGPT Prompting开发实战(五)

一、如何编写有效的prompt

对于大语言模型来说,编写出有效的prompt能够帮助模型更好地理解用户的意图(intents),生成针对用户提问来说是有效的答案,避免用户与模型之间来来回回对话多次但是用户不能从LLM那里得到有意义的反馈。本文通过具体案例演示解析两个能够帮助写出有效的prompts的基本原则。案例使用来自OpenAI的模型"gpt-3.5-turbo"并调用相关的chat API:

二、编写清晰和有具体的指令(instructions)的prompt

要点描述:

使用分割符来清楚标明模型输入的不同部分,可以使用的分割符包括:```, """, < >, <tag> </tag>, :等等。

prompt示例如下:

text = f"""

You should express what you want a model to do by \

providing instructions that are as clear and \

specific as you can possibly make them. \

This will guide the model towards the desired output, \

and reduce the chances of receiving irrelevant \

or incorrect responses. Don't confuse writing a \

clear prompt with writing a short prompt. \

In many cases, longer prompts provide more clarity \

and context for the model, which can lead to \

more detailed and relevant outputs.

"""

prompt = f"""

Summarize the text delimited by triple backticks \

into a single sentence.

```{text}```

"""

response = get_completion(prompt)

print(response)

打印输出结果如下:

To guide a model towards the desired output and reduce irrelevant or incorrect responses, it is important to provide clear and specific instructions, which can be achieved through longer prompts that offer more clarity and context.

要点描述:

如何请求LLM给出一个结构化的输出,常见的结构化输出格式有JSON,HTML等。

prompt示例如下:

prompt = f"""

Generate a list of three made-up book titles along \

with their authors and genres.

Provide them in JSON format with the following keys:

book_id, title, author, genre.

"""

response = get_completion(prompt)

print(response)

打印输出结果如下:

要点描述:

请求模型检查输入文本是否满足给定的条件。

prompt示例如下(能够满足给定条件):

text_1 = f"""

Making a cup of tea is easy! First, you need to get some \

water boiling. While that's happening, \

grab a cup and put a tea bag in it. Once the water is \

hot enough, just pour it over the tea bag. \

Let it sit for a bit so the tea can steep. After a \

few minutes, take out the tea bag. If you \

like, you can add some sugar or milk to taste. \

And that's it! You've got yourself a delicious \

cup of tea to enjoy.

"""

prompt = f"""

You will be provided with text delimited by triple quotes.

If it contains a sequence of instructions, \

re-write those instructions in the following format:

Step 1 - ...

Step 2 - ...

...

Step N - ...

If the text does not contain a sequence of instructions, \

then simply write \"No steps provided.\"

\"\"\"{text_1}\"\"\"

"""

response = get_completion(prompt)

print("Completion for Text 1:")

print(response)

打印输出结果如下:

prompt示例如下(不能满足给定条件):

text_2 = f"""

The sun is shining brightly today, and the birds are \

singing. It's a beautiful day to go for a \

walk in the park. The flowers are blooming, and the \

trees are swaying gently in the breeze. People \

are out and about, enjoying the lovely weather. \

Some are having picnics, while others are playing \

games or simply relaxing on the grass. It's a \

perfect day to spend time outdoors and appreciate the \

beauty of nature.

"""

prompt = f"""

You will be provided with text delimited by triple quotes.

If it contains a sequence of instructions, \

re-write those instructions in the following format:

Step 1 - ...

Step 2 - ...

...

Step N - ...

If the text does not contain a sequence of instructions, \

then simply write \"No steps provided.\"

\"\"\"{text_2}\"\"\"

"""

response = get_completion(prompt)

print("Completion for Text 2:")

print(response)

打印输出结果如下:

相关推荐
深眸财经8 小时前
机器人再冲港交所,优艾智合能否破行业困局?
人工智能·机器人
小宁爱Python8 小时前
从零搭建 RAG 智能问答系统1:基于 LlamaIndex 与 Chainlit实现最简单的聊天助手
人工智能·后端·python
新知图书9 小时前
Encoder-Decoder架构的模型简介
人工智能·架构·ai agent·智能体·大模型应用开发·大模型应用
大模型真好玩9 小时前
低代码Agent开发框架使用指南(一)—主流开发框架对比介绍
人工智能·低代码·agent
tzc_fly10 小时前
AI作为操作系统已经不能阻挡了,尽管它还没来
人工智能·chatgpt
PKNLP10 小时前
深度学习之神经网络1(Neural Network)
人工智能·深度学习·神经网络
文火冰糖的硅基工坊11 小时前
《投资-99》价值投资者的认知升级与交易规则重构 - 什么是周期性股票?有哪些周期性股票?不同周期性股票的周期多少?周期性股票的买入和卖出的特点?
大数据·人工智能·重构·架构·投资·投机
Elastic 中国社区官方博客11 小时前
Elasticsearch:使用推理端点及语义搜索演示
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
AI新兵11 小时前
深度学习基础:从原理到实践——第一章感知机(中)
人工智能·深度学习
liliangcsdn11 小时前
从LLM角度学习和了解MoE架构
人工智能·学习·transformer