OpenCV(二十四):可分离滤波

目录

1.可分离滤波的原理

2.可分离滤波函数sepFilter2D()

3.示例代码


1.可分离滤波的原理

可分离滤波的原理基于滤波器的可分离性。对于一个二维滤波器,如果它可以表示为水平方向和垂直方向两个一维滤波器的卷积,那么它就是可分离的。也就是说,一个二维滤波器可以通过两次一维卷积来实现,分别在水平和垂直方向进行滤波。

2.可分离滤波函数sepFilter2D()

void cv::sepFilter2D ( InputArray src,

OutputArray dst,

int ddepth,

InputArray kernelX,

InputArray kernelY,

Point anchor = point(-1,-1),

double delta =0 ,

int borderType = BORDER_DEFAULT

)

  • src:待滤波图像
  • dst:输出图像,与输入图像src具有相同的尺寸、通道数和数据类型
  • ddepth: 输出图像的数据类型(深度)。
  • kernelX:X方向的滤波器
  • kernelY:Y方向的滤波器
  • anchor:内核的基准点(锚点),其默认值为(-1,-1)代表内核基准点位于kernel的中心位置delta: 偏值,在计算结果中加上偏值。
  • borderType:像素外推法选择标志。

3.示例代码

展示如何使用可分离滤波在图像上应用高斯滤波:

复制代码
//可分离滤波
void  Separable_filtering(Mat image){
    // 定义滤波器大小和标准差
    int ksize = 3;
    double sigma = 1.0;

    // 获取水平方向和垂直方向的高斯滤波器
    cv::Mat kernelX = cv::getGaussianKernel(ksize, sigma);
    cv::Mat kernelY = cv::getGaussianKernel(ksize, sigma);

    // 计算水平方向和垂直方向上的一维滤波器
    cv::Mat kernelXY = kernelX * kernelY.t();

    // 执行可分离滤波
    cv::Mat result;
    cv::sepFilter2D(image, result, -1, kernelX, kernelY);
 
}

在上述示例中,cv::getGaussianKernel()函数用于获取高斯滤波器。ksize参数表示滤波器的大小,sigmaXsigmaY参数表示X和Y方向上的标准差。

通过将一维滤波器应用于图像的两个方向,并使用cv::sepFilter2D()函数将它们结合起来,我们可以实现高效的可分离滤波操作。

相关推荐
美狐美颜sdk37 分钟前
直播美颜SDK特效功能实战:从API调用到效果调优的全过程
人工智能·1024程序员节·美颜sdk·直播美颜sdk·第三方美颜sdk
我是苏苏3 小时前
C#高级:程序查询写法性能优化提升策略(附带Gzip算法示例)
开发语言·算法·c#
sali-tec4 小时前
C# 基于halcon的视觉工作流-章56-彩图转云图
人工智能·算法·计算机视觉·c#
梦想画家4 小时前
基于PyTorch的时间序列异常检测管道构建指南
人工智能·pytorch·python
Elastic 中国社区官方博客5 小时前
在 Elasticsearch 中使用 Mistral Chat completions 进行上下文工程
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
一碗绿豆汤5 小时前
机器学习第二阶段
人工智能·机器学习
用什么都重名5 小时前
DeepSeek-OCR 深度解析
人工智能·ocr·deepseek-ocr
河南骏6 小时前
RAG_检索进阶
人工智能·深度学习
灯火不休时7 小时前
95%准确率!CNN交通标志识别系统开源
人工智能·python·深度学习·神经网络·cnn·tensorflow
学涯乐码堂主7 小时前
GESP C++ 四级第一章:再谈函数(上)
c++·青少年编程·gesp·四级·学漄乐码青少年编程培训