OpenCV(二十四):可分离滤波

目录

1.可分离滤波的原理

2.可分离滤波函数sepFilter2D()

3.示例代码


1.可分离滤波的原理

可分离滤波的原理基于滤波器的可分离性。对于一个二维滤波器,如果它可以表示为水平方向和垂直方向两个一维滤波器的卷积,那么它就是可分离的。也就是说,一个二维滤波器可以通过两次一维卷积来实现,分别在水平和垂直方向进行滤波。

2.可分离滤波函数sepFilter2D()

void cv::sepFilter2D ( InputArray src,

OutputArray dst,

int ddepth,

InputArray kernelX,

InputArray kernelY,

Point anchor = point(-1,-1),

double delta =0 ,

int borderType = BORDER_DEFAULT

)

  • src:待滤波图像
  • dst:输出图像,与输入图像src具有相同的尺寸、通道数和数据类型
  • ddepth: 输出图像的数据类型(深度)。
  • kernelX:X方向的滤波器
  • kernelY:Y方向的滤波器
  • anchor:内核的基准点(锚点),其默认值为(-1,-1)代表内核基准点位于kernel的中心位置delta: 偏值,在计算结果中加上偏值。
  • borderType:像素外推法选择标志。

3.示例代码

展示如何使用可分离滤波在图像上应用高斯滤波:

复制代码
//可分离滤波
void  Separable_filtering(Mat image){
    // 定义滤波器大小和标准差
    int ksize = 3;
    double sigma = 1.0;

    // 获取水平方向和垂直方向的高斯滤波器
    cv::Mat kernelX = cv::getGaussianKernel(ksize, sigma);
    cv::Mat kernelY = cv::getGaussianKernel(ksize, sigma);

    // 计算水平方向和垂直方向上的一维滤波器
    cv::Mat kernelXY = kernelX * kernelY.t();

    // 执行可分离滤波
    cv::Mat result;
    cv::sepFilter2D(image, result, -1, kernelX, kernelY);
 
}

在上述示例中,cv::getGaussianKernel()函数用于获取高斯滤波器。ksize参数表示滤波器的大小,sigmaXsigmaY参数表示X和Y方向上的标准差。

通过将一维滤波器应用于图像的两个方向,并使用cv::sepFilter2D()函数将它们结合起来,我们可以实现高效的可分离滤波操作。

相关推荐
im_AMBER14 分钟前
Leetcode 74 K 和数对的最大数目
数据结构·笔记·学习·算法·leetcode
Blossom.11831 分钟前
基于Embedding+图神经网络的开源软件供应链漏洞检测:从SBOM到自动修复的完整实践
人工智能·分布式·深度学习·神经网络·copilot·开源软件·embedding
t1987512833 分钟前
电力系统经典节点系统潮流计算MATLAB实现
人工智能·算法·matlab
万悉科技35 分钟前
比 Profound 更适合中国企业的GEO产品
大数据·人工智能
断剑zou天涯36 分钟前
【算法笔记】蓄水池算法
笔记·算法
mqiqe40 分钟前
vLLM(vLLM.ai)生产环境部署大模型
人工智能·vllm
V1ncent Chen40 分钟前
机器是如何“洞察“世界的?:深度学习
人工智能·深度学习
AI营销前沿42 分钟前
中国AI营销专家深度解析:谁在定义AI营销的未来?
人工智能
长安er1 小时前
LeetCode 206/92/25 链表翻转问题-“盒子-标签-纸条模型”
java·数据结构·算法·leetcode·链表·链表翻转
前端大卫1 小时前
【重磅福利】学生认证可免费领取 Gemini 3 Pro 一年
前端·人工智能