深入浅出PyTorch函数torch.rand与torch.randn

torch.randtorch.randn 都是PyTorch中用于生成随机张量的函数,但它们生成随机数的方式有所不同。

一、torch.rand

torch.rand 生成在区间 [0, 1) 内均匀分布的随机数。
size 参数是一个表示所需张量形状的元组或整数。可以生成任何形状的随机张量。

二、torch.randn

torch.randn 生成从标准正态分布(均值为0,标准差为1)中采样的随机数。
size 参数同样是一个表示所需张量形状的元组或整数。

三、代码示例

py 复制代码
import torch

random_tensor1 = torch.rand((2, 3))
print(random_tensor1)

random_tensor2 = torch.randn((2, 3))
print(random_tensor2)
lua 复制代码
tensor([[0.5962, 0.6559, 0.9725],
        [0.4057, 0.5187, 0.2943]])
tensor([[ 0.1503,  0.6359, -0.2597],
        [-0.3500, -1.1397,  1.9649]])

三、注意

需要注意的是,由于 torch.randn 生成的是从标准正态分布中采样的随机数,因此它的值可以在负无穷到正无穷之间,而 torch.rand 生成的随机数范围在 [0, 1) 内。

四、解释"在区间 [0, 1) 内均匀分布的随机数"

在区间 [0, 1) 内均匀分布的随机数是一种随机数生成方式,其中生成的随机数在区间 [0, 1) 内的任何值都具有相同的概率分布。这意味着在 [0, 1) 内的任何值都有可能被生成,包括所有的实数值。因此,生成的随机数可以是小数,而不仅仅是整数。

相关推荐
坚果派·白晓明19 小时前
AI驱动的命令行工具集x-cmd鸿蒙化适配后通过DevBox安装使用
人工智能·华为·harmonyos
GISer_Jing19 小时前
前端营销技术实战:数据+AI实战指南
前端·javascript·人工智能
Dekesas969520 小时前
【深度学习】基于Faster R-CNN的黄瓜幼苗智能识别与定位系统,农业AI新突破
人工智能·深度学习·r语言
大佐不会说日语~20 小时前
Spring AI Alibaba 的 ChatClient 工具注册与 Function Calling 实践
人工智能·spring boot·python·spring·封装·spring ai
CeshirenTester20 小时前
Playwright元素定位详解:8种定位策略实战指南
人工智能·功能测试·程序人生·单元测试·自动化
世岩清上21 小时前
AI驱动的智能运维:从自动化到自主化的技术演进与架构革新
运维·人工智能·自动化
K2_BPM21 小时前
告别“单点智能”:AI Agent如何重构企业生产力与流程?
人工智能
TMT星球21 小时前
深业云从人工智能产业投资基金设立,聚焦AI和具身智能相关产业
人工智能
哥布林学者21 小时前
吴恩达深度学习课程四:计算机视觉 第二周:经典网络结构 (三)1×1卷积与Inception网络
深度学习·ai
鼾声鼾语21 小时前
matlab的ros2发布的消息,局域网内其他设备收不到情况吗?但是matlab可以订阅其他局域网的ros2发布的消息(问题总结)
开发语言·人工智能·深度学习·算法·matlab·isaaclab