最长递增子序列 -- 动规

300. 最长递增子序列

注意「⼦序列」和「⼦串」的区别,⼦串⼀定是连续的,⽽⼦序列不⼀定是连续的。

python 复制代码
class LengthOfLIS:
    """
    300. 最长递增子序列
    https://leetcode.cn/problems/longest-increasing-subsequence/description/
    """

    def solution(self, nums: List[int]):
        """
        方案一: 动态规划
        辅助数组 dp,dp[i] 表示以nums[i]结尾的子序列的最大长度
        时间复杂度O(N^2)
        空间复杂度O(N)
        :param nums:
        :return:
        """
        n = len(nums)
        dp = [1] * n
        for i in range(1, n):
            tmp = 0
            for j in range(0, i):
                if nums[j] < nums[i]:
                    tmp = max(tmp, dp[j])
            dp[i] = tmp + 1
        return max(dp)

    def solution2(self, nums: List[int]):
        """
        方案二:动态规划
        辅助数组 ends,ends[i] 代表目前所有长度为i+1的递增子序列的最小结尾。
        可推断出 ends 也是递增序列
        时间复杂度O(N*logN)
        空间复杂度O(N)
        :param nums:
        :return:
        """
        if not nums:
            return 0

        n = len(nums)
        ends = [0] * n
        ends[0] = nums[0]
        l, r, m, right = 0, 0, 0, 0
        res = 1
        for i in range(1, n):
            l = 0
            r = right
            while l <= r:
                m = (l + r) // 2
                if nums[i] > ends[m]:
                    l = m + 1
                else:
                    r = m - 1
            print(right, l)
            right = max(right, l)
            ends[l] = nums[i]
            res = max(res, l + 1)

        return res

    def solution3(self, nums: List[int]) -> int:
        """
        模拟蜘蛛纸牌
        :param nums:
        :return:
        """
        top = [0] * len(nums)
        #  牌堆数初始化为 0
        piles = 0
        for i in range(len(nums)):
            poker = nums[i]

            left, right = 0, piles
            while left < right:
                mid = left + (right - left) // 2
                if top[mid] > poker:
                    right = mid
                elif top[mid] < poker:
                    left = mid + 1
                else:
                    right = mid

            # 没找到合适的牌堆,新建⼀堆
            if left == piles:
                piles += 1
            # 把这张牌放到牌堆顶
            top[left] = poker

        return piles
相关推荐
_OP_CHEN35 分钟前
【算法基础篇】(三十三)动态规划之区间 DP:从回文串到石子合并,吃透区间类问题的万能解法
c++·算法·蓝桥杯·动态规划·算法竞赛·acm/icpc·区间动态规划
roman_日积跬步-终至千里12 小时前
【计算机设计与算法-习题2】动态规划应用:矩阵乘法与钢条切割问题
算法·矩阵·动态规划
少许极端12 小时前
算法奇妙屋(十八)-子数组系列(动态规划)
算法·动态规划·子数组
_OP_CHEN20 小时前
【算法基础篇】(三十二)动态规划之背包问题扩展:从多重到多维,解锁背包问题全场景
c++·算法·蓝桥杯·动态规划·背包问题·算法竞赛·acm/icpc
好易学·数据结构1 天前
可视化图解算法73:跳台阶(爬楼梯)
数据结构·算法·leetcode·动态规划·笔试
_OP_CHEN2 天前
【算法基础篇】(三十一)动态规划之基础背包问题:从 01背包到完全背包,带你吃透背包问题的核心逻辑
算法·蓝桥杯·动态规划·背包问题·01背包·完全背包·acm/icpc
啊吧怪不啊吧2 天前
算法王冠上的明珠——动态规划之路径问题(第一篇)
大数据·算法·贪心算法·动态规划
CoderYanger2 天前
动态规划算法-01背包问题:50.分割等和子集
java·算法·leetcode·动态规划·1024程序员节
CoderYanger3 天前
动态规划算法-两个数组的dp(含字符串数组):48.最长重复子数组
java·算法·leetcode·动态规划·1024程序员节
冰西瓜6003 天前
动态规划(一)算法设计与分析 国科大
算法·动态规划