不同的子序列

Solution
有点像背包dp

cpp
#include<iostream>
#include<vector>
#include<string>
using namespace std;
//递归做法
//f(i,j)表示从从字符串s的i开始到结尾,能够选出从字符串t从j到结尾的方案数
//相当于一个背包问题,s是n1件物品,每件物品选择拿和不拿,相等才可以拿,一直到把t所需要的都拿到手才表示一种方案结束
int f1(string s, string t, int i, int j) {
int n1 = s.length();
int n2 = t.length();
if (j == n2) return 1;
if (i == n1) return 0;
int ans = f1(s, t, i + 1, j);
if (s[i] == t[j]) ans += f1(s, t, i + 1, j + 1);
return ans;
}
//带缓存表的递归
int f2(string s, string t, int i, int j, vector<vector<int>>& dp) {
int n1 = s.length();
int n2 = t.length();
if (j == n2) return 1;
if (i == n1) return 0;
if (dp[i][j] != -1) return dp[i][j];
int ans = f2(s, t, i + 1, j, dp);
if (s[i] == t[j]) ans += f2(s, t, i + 1, j + 1, dp);
dp[i][j] = ans;
return ans;
}
//dp做法
unsigned long long f3(string s, string t) {
int n1 = s.length();
int n2 = t.length();
vector<vector<unsigned long long>>dp(n1 + 1, vector<unsigned long long>(n2 + 1, 0));
for (int i = n1; i >= 0; --i) {
for (int j = 0; j <= n2; ++j) {
//注意边界情况,递归的时候怎么写的,dp就怎么写
if (j == n2) { dp[i][j] = 1; continue; }
if (i == n1) { dp[i][j] = 0; continue; }
unsigned long long ans = dp[i + 1][j];
if (s[i] == t[j])ans += dp[i + 1][j + 1];
dp[i][j] = ans;
}
}
return dp[0][0];
}
//dp+空间压缩
unsigned long long f4(string s, string t) {
int n1 = s.length();
int n2 = t.length();
vector<unsigned long long>dp(n2 + 1,0);
for (int i = n1; i >= 0; --i) {
for (int j = 0; j <= n2; ++j) {
if (j == n2) { dp[j] = 1; continue; }
if (i == n1) { dp[j] = 0; continue; }
unsigned long long ans = dp[j];
if (s[i] == t[j]) ans += dp[j + 1];
dp[j] = ans;
}
}
return dp[0];
}
int numDistinct1(string s, string t) {
return f1(s, t, 0, 0);
}
int numDistinct2(string s, string t) {
int n1 = s.length();
int n2 = t.length();
vector<vector<int>>dp(n1 + 1, vector<int>(n2 + 1, -1));
return f2(s, t, 0, 0, dp);
}
int numDistinct3(string s, string t) {
return f3(s, t);
}
int numDistinct(string s, string t) {
return f4(s, t);
}
int main() {
return 0;
}