X2-VLM: All-In-One Pre-trained Model For Vision-Language Tasks论文笔记

|--------------------------------------------------------------------------------------------------------------|
| Title:X2-VLM: All-In-One Pre-trained Model For Vision-Language Tasks |

|----------------------------------------------|
| Code |

1. Motivation

  • CLIP这一类方法只能进行图片级别的视觉和文本对齐;
  • 也有一些方法利用预训练的目标检测器进行目标级别的视觉和文本对齐,但是只能编码目标内部的特征,无法有效表达多目标上下文关联;
  • 本文致力于进行多粒度(objects, regions, and images)的视觉文本对齐预训练任务;

2. 模型结构

3. 损失函数

3.1 contrastive loss

  1. 文本特征和视觉特征之间的相似性定义:
  1. vision-to-text similarity
  1. text-to-vision similarity

  2. GT:one-hot

  3. cross-entropy loss

3.2 matching loss

  1. For each visual concept in a mini-batch, we sample an in-batch hard negative text by following p v 2 t ( V ) p^{v2t}(V) pv2t(V). (与当前视觉特征越接近的文本越可能被采样)
  2. We also sample one hard negative visual concept for each text.
  3. put the pairs as inputs for the fusion module, and then we use xcls, the output [CLS] embedding of the fusion module, to predict the matching probability p m a t c h p^{match} pmatch , and the loss is:

3.3 masked language modeling loss (MLM)

3.4 bbox loss

相关推荐
噜~噜~噜~16 小时前
论文笔记:“Mind the Gap Preserving and Compensating for the Modality Gap in“
论文阅读
张较瘦_16 小时前
[论文阅读] AI+ | 从 “刚性科层” 到 “智能协同”:一文读懂 AI 应对国家安全风险的核心逻辑
论文阅读·人工智能
张较瘦_1 天前
[论文阅读] AI+ | GenAI重塑智慧图书馆:华东师大实践AI虚拟馆员,解放馆员聚焦高价值任务
论文阅读·人工智能
CoookeCola2 天前
MovieNet (paper) :推动电影理解研究的综合数据集与基准
数据库·论文阅读·人工智能·计算机视觉·视觉检测·database
张较瘦_3 天前
[论文阅读] AI+ | AI如何重塑审计行业?从“手工筛查”到“智能决策”:AI审计的核心逻辑与未来路径
论文阅读·人工智能
苦瓜汤补钙3 天前
论文阅读——Segment Anything(Meta AI)——SAM
论文阅读·图像处理·人工智能·nlp·ai编程
CV-杨帆3 天前
论文阅读:arxiv 2025 Safety in Large Reasoning Models: A Survey
论文阅读
张较瘦_4 天前
[论文阅读] AI | 大语言模型服务系统服务级目标和系统级指标优化研究
论文阅读·人工智能·语言模型
Vizio<4 天前
《基于电阻层析成像(ERT)的机器人皮肤空间灵敏度均衡:通过应变系数分布优化》ICRA 2025 论文解读
论文阅读·机器人·机器人触觉
三木今天学习了嘛5 天前
【VLA & Markov】VLA 架构和构建模块 与 Markov 带来的时序思考
论文阅读