前沿技术借鉴研讨-2025.9.23 (数据不平衡)

A denoising majority weighted minority oversampling technique for imbalanced classification (Expert Systems With Applications 2025) (1区)


【论文链接】

https://doi.org/10.1016/j.eswa.2025.128199
【核心目标】

提供了一种针对不平衡分类问题的数据增强方法,即DN-MWMOTE(Denoising Majority Weighted Minority Oversampling Technique),提升少数类样本的质量和数量,从而改善分类器对少数类的识别能力。
【具体步骤】

1)自适应噪声去除:KNN识别噪声,通过评估可疑噪声对分类器性能的影响(使用AUC指标),区分真正的噪声和误判的噪声,从而更准确地去除噪声。

2)样本权重计算:计算每个少数类样本与边界多数类样本的接近度和密度。

3)合成样本:从少数类样本集合中随机选择样本x,按权重选择样本y,通过线性插值合成新样本。

Optimizing stability of heart disease prediction across imbalanced learning with interpretable Grow Network (Computer Methods and Programs in Biomedicine 2025) (2区)


【论文链接】

https://doi.org/10.1016/j.cmpb.2025.108702
【核心目标】

提出一种适用于不平衡数据的、稳定的神经网络模型(GrowNet),用于心脏病预测。
【具体步骤】

1)特征选择:通过交叉列联表分析,结合年龄组、心脏病状态和其他健康特征,识别与心脏病在不同年龄段显著相关的特征。

2)自适应采样技术:对每个心脏病样本,找到其最近的k个邻居,如果邻居中健康样本太多,说明该心脏病样本处于"稀疏区域",则用线性插值生成新的合成心脏病样本;计算新生成样本与所有多数类样本的欧氏距离,如果距离小于阈值则认为是重叠样本,将其从训练集中删除。

3)生长网络(GrowNet):一种动态自适应神经网络架构(MLP),根据数据特性自动调整深度和宽度。

DRL-ECG-HF: Deep reinforcement learning for enhanced automated diagnosis of heart failure with imbalanced ECG data (Biomedical Signal Processing and Control 2025) (2区)



【论文链接】

https://doi.org/10.1016/j.bspc.2025.107680
【核心目标】

开发一种基于深度强化学习(DRL)的多实例模型(DRL-ECG-HF),用于从不平衡的心电图(ECG)数据中自动诊断心力衰竭(HF)。

相关推荐
DisonTangor2 小时前
MiniMax 开源一个为极致编码与智能体工作流打造的迷你模型——MiniMax-M2
人工智能·语言模型·开源·aigc
Giser探索家4 小时前
无人机桥梁巡检:以“空天地”智慧之力守护交通生命线
大数据·人工智能·算法·安全·架构·无人机
不会学习的小白O^O4 小时前
双通道深度学习框架可实现从无人机激光雷达点云中提取橡胶树冠
人工智能·深度学习·无人机
恒点虚拟仿真4 小时前
虚拟仿真实训破局革新:打造无人机飞行专业实践教学新范式
人工智能·无人机·ai教学·虚拟仿真实训·无人机飞行·无人机专业虚拟仿真·无人机飞行虚拟仿真
鲜枣课堂4 小时前
华为最新光通信架构AI-OTN,如何应对AI浪潮?
人工智能·华为·架构
小志biubiu5 小时前
【Linux】Ext系列文件系统
linux·服务器·c语言·经验分享·笔记·ubuntu·操作系统
格林威5 小时前
AOI在新能源电池制造领域的应用
人工智能·数码相机·计算机视觉·视觉检测·制造·工业相机
dxnb225 小时前
Datawhale25年10月组队学习:math for AI+Task5解析几何
人工智能·学习
DooTask官方号5 小时前
DooTask 1.3.38 版本更新:MCP 服务器与 AI 工具深度融合,开启任务管理新体验
运维·服务器·人工智能·开源软件·dootask