球谐函数实现环境光照漫反射实践

该文章以及代码主要来自
图形学论文解析与复现:【论文复现】An Efficient Representation for Irradiance Environment Maps
作者:Monica的小甜甜

与原文的不同

  • 对一些有问题的地方进行了修改
  • 添加了注释
  • 对有疑问的地方添加了疑问点
  • 引入了其他一些Blog填充了原文中忽略的信息

1、预计算球面谐波函数系数

首先根据上一篇【球谐函数在环境光照中的使用原理】得到的最终公式:

我们需要预计算 L l m L_l^m Llm的值。计算公式为:

Ω \Omega Ω为球面积分,这里对应对天空盒逐像素积分。

积分代码为:

cpp 复制代码
void Harmonics::Evaluate()//求值
{
	m_Coefs = vector<glm::vec3>(m_Degree, glm::vec3());
	
	//6张图
	for (int k = 0; k < 6; k++)
	{
		cv::Mat img = m_Images[k];
		int w = m_Images[k].cols;
		int h = m_Images[k].rows;
		//逐像素
		for (int j = 0; j < w; j++)
		{
			for (int i = 0; i < h; i++)
			{
				// 像素点位置
				float px = (float)i + 0.5;
				float py = (float)j + 0.5;
				// 像素点UV 【-1,1】:以摄像机正对位置的(0,0)
				float u = 2.0 * (px / (float)w) - 1.0;
				float v = 2.0 * (py / (float)h) - 1.0;
				// 像素间UV的一半的偏移量
				float d_x = 1.0 / (float)w;
				// (x0,y0)像素左下角 (x1,y1)像素右上角
				float x0 = u - d_x;
				float y0 = v - d_x;
				float x1 = u + d_x;
				float y1 = v + d_x;
				// 计算Cubemap的一个像素对应的立体角的大小
				float d_a = surfaceArea(x0, y0) - surfaceArea(x0, y1) - surfaceArea(x1, y0) + surfaceArea(x1, y1);
				// 纹理像素点 转化为 世界坐标点
				u = (float)j / (img.cols - 1);
				v = 1.0f - (float)i / (img.rows - 1);
				glm::vec3 p = CubeUV2XYZ({ k, u, v });
				// 获取当前像素颜色
				auto c = img.at<cv::Vec3f>(i, j);
				glm::vec3 color = {c[2], c[1], c[0]};
				// 得到基函数计算结果列表
				vector<float> Y = Basis(p);
				// 计算系数
				for (int i = 0; i < m_Degree; i++)
				{
					m_Coefs[i] = m_Coefs[i] + Y[i] * color * d_a;
				}
			}
		}
	}
}

其中 计算Cubemap的一个像素对应的立体角的大小 原理可参照
Solid Angle of A Cubemap Texel - 计算Cubemap的一个像素对应的立体角的大小

我们将得到的积分结果保存在一个文件中【SHCoefficients.txt】,用于之后读取。

2、预计算BRDF的LUT图

LUT(Look up Table)图,预计算了任意一个天空盒下,已知法线和视口的夹角 以及材质粗糙度 ,查找得到Frenel项

然而这个LUT图和IBL中的LUT有一些不同。

因为IBL中的LUT加入了 n ⋅ w n\cdot w n⋅w 光照衰减项。

而在球谐函数中, n ⋅ w n\cdot w n⋅w 作为 t l 参与运算 t_l参与运算 tl参与运算,因此在球谐函数的IBL中删除了 n ⋅ w n\cdot w n⋅w。

main函数计算

c 复制代码
	for(int i = 0; i < N; i++){
		for (int j = 0; j < N; j++)
		{
			float NoV = (i + 0.5f) * (1.0f / N);
			float roughness = (j + 0.5f) * (1.0f / N);
			glm::vec2 eval = IntegrateBRDF(NoV, roughness);
			tex.store<glm::vec2>({ i, N - j - 1 }, 0, eval);
		}
	}

其他被调用函数

c 复制代码
const float PI = 3.14159265358979323846264338327950288;

float RadicalInverse_VdC(unsigned int bits)
{
	bits = (bits << 16u) | (bits >> 16u);
	bits = ((bits & 0x55555555u) << 1u) | ((bits & 0xAAAAAAAAu) >> 1u);
	bits = ((bits & 0x33333333u) << 2u) | ((bits & 0xCCCCCCCCu) >> 2u);
	bits = ((bits & 0x0F0F0F0Fu) << 4u) | ((bits & 0xF0F0F0F0u) >> 4u);
	bits = ((bits & 0x00FF00FFu) << 8u) | ((bits & 0xFF00FF00u) >> 8u);
	return float(bits) * 2.3283064365386963e-10;
}

glm::vec2 Hammersley(unsigned int i, unsigned int N)
{
	return glm::vec2(float(i) / float(N), RadicalInverse_VdC(i));
}

glm::vec3 ImportanceSampleGGX(glm::vec2 Xi, float roughness, glm::vec3 N)
{
	float a = roughness * roughness;

	float phi = 2.0 * PI * Xi.x;
	float cosTheta = sqrt((1.0 - Xi.y) / (1.0 + (a*a - 1.0) * Xi.y));
	float sinTheta = sqrt(1.0 - cosTheta * cosTheta);

	// from spherical coordinates to cartesian coordinates
	glm::vec3 H;
	H.x = cos(phi) * sinTheta;
	H.y = sin(phi) * sinTheta;
	H.z = cosTheta;

	// from tangent-space vector to world-space sample vector
	glm::vec3 up = abs(N.z) < 0.999 ? glm::vec3(0.0, 0.0, 1.0) : glm::vec3(1.0, 0.0, 0.0);
	glm::vec3 tangent = normalize(cross(up, N));
	glm::vec3 bitangent = cross(N, tangent);

	glm::vec3 sampleVec = tangent * H.x + bitangent * H.y + N * H.z;
	return normalize(sampleVec);
}

float GeometrySchlickGGX(float NdotV, float roughness)
{
	float a = roughness;
	float k = (a * a) / 2.0;

	float nom = NdotV;
	float denom = NdotV * (1.0 - k) + k;

	return nom / denom;
}

float GeometrySmith(float roughness, float NoV, float NoL)
{
	float ggx2 = GeometrySchlickGGX(NoV, roughness);
	float ggx1 = GeometrySchlickGGX(NoL, roughness);

	return ggx1 * ggx2;
}

glm::vec2 IntegrateBRDF(float NdotV, float roughness, unsigned int samples = 1024)
{
	glm::vec3 V;
	V.x = sqrt(1.0 - NdotV * NdotV);
	V.y = 0.0;
	V.z = NdotV;

	float A = 0.0;
	float B = 0.0;

	glm::vec3 N = glm::vec3(0.0, 0.0, 1.0);

	for (unsigned int i = 0u; i < samples; ++i)
	{
		glm::vec2 Xi = Hammersley(i, samples);
		glm::vec3 H = ImportanceSampleGGX(Xi, roughness, N);
		glm::vec3 L = normalize(2.0f * dot(V, H) * H - V);

		float NoL = glm::max(L.z, 0.0f);
		float NoH = glm::max(H.z, 0.0f);
		float VoH = glm::max(dot(V, H), 0.0f);
		float NoV = glm::max(dot(N, V), 0.0f);

		if (NoL > 0.0)
		{
			float G = GeometrySmith(roughness, NoV, NoL);
			float G_Vis = (G * VoH) / (NoH * NoV) / NoL;
			float Fc = pow(1.0 - VoH, 5.0);

			A += (1.0 - Fc) * G_Vis;
			B += Fc * G_Vis;
		}
	}

	return glm::vec2(A / float(samples), B / float(samples));
}

3、将计算数据传入Shader

  • 传入BRDFLUT纹理
  • 传入球谐函数系数列表
c 复制代码
void CShadingPass::initV()
{

	auto m_LUTTexture = std::make_shared<ElayGraphics::STexture>();
	loadTextureFromFile("../Textures/BRDFLUT/BRDFLut.dds", m_LUTTexture);
	getCoefs();
	ElayGraphics::Camera::setMainCameraFarPlane(100);
	ElayGraphics::Camera::setMainCameraPos({ -1.57278, 0.244948, 0.367194 });
	ElayGraphics::Camera::setMainCameraFront({ 0.967832, -0.112856, -0.224865 });
	ElayGraphics::Camera::setMainCameraMoveSpeed(0.5);
	m_pShader = std::make_shared<CShader>("Sponza_VS.glsl", "Sponza_FS.glsl");
	m_pSponza = std::dynamic_pointer_cast<CSponza>(ElayGraphics::ResourceManager::getGameObjectByName("Sponza"));
	m_pShader->activeShader();
	m_pShader->setTextureUniformValue("u_BRDFLut", m_LUTTexture);
	m_pShader->setMat4UniformValue("u_ModelMatrix", glm::value_ptr(m_pSponza->getModelMatrix()));
	for (int i = 0; i < m_Coefs.size(); i++)
	{
		m_pShader->setFloatUniformValue("u_Coef[" + std::to_string(i) + "]", m_Coefs[i].x, m_Coefs[i].y, m_Coefs[i].z);
	}
	m_pSponza->initModel(*m_pShader);
}

4、 Draw

c 复制代码
#version 430 core

in  vec3 v2f_FragPosInViewSpace;
in  vec2 v2f_TexCoords;
in  vec3 v2f_ViewSpaceNormal;
in  vec3 v2f_WorldSpaceNormal;

layout (location = 0) out vec4 Albedo_;

const float PI = 3.1415926535897932384626433832795;
uniform vec3 u_Coef[16];
uniform vec3 u_DiffuseColor;
uniform sampler2D u_BRDFLut;


vec3 FresnelSchlickRoughness(float cosTheta, vec3 F0, float roughness)
{
    return F0 + (max(vec3(1.0 - roughness), F0) - F0) * pow(max(1.0 - cosTheta, 0.0), 5.0);
}  

void main()
{	
	if((abs(v2f_ViewSpaceNormal.x) < 0.0001f) && (abs(v2f_ViewSpaceNormal.y) < 0.0001f) && (abs(v2f_ViewSpaceNormal.z) < 0.0001f))
	{
		Albedo_ = vec4(0, 0, 0, 1);
		return;
	}

	float Basis[9];
	float x = v2f_WorldSpaceNormal.x;
	float y = v2f_WorldSpaceNormal.y;
	float z = v2f_WorldSpaceNormal.z;
	float x2 = x * x;
	float y2 = y * y;
	float z2 = z * z;
    
	//这里所有系数应该为乘PI------------------个人认为
    Basis[0] = 1.f / 2.f * sqrt(1.f / PI);
    Basis[1] = 2.0 / 3.0 * sqrt(3.f / 4.f * PI) * z;
    Basis[2] = 2.0 / 3.0 * sqrt(3.f / 4.f * PI) * y;
    Basis[3] = 2.0 / 3.0 * sqrt(3.f / 4.f * PI) * x;
	
    Basis[4] = 1.0 / 4.0 * 1.f / 2.f * sqrt(15.f * PI) * x * z;
    Basis[5] = 1.0 / 4.0 * 1.f / 2.f * sqrt(15.f * PI) * z * y;
    Basis[6] = 1.0 / 4.0 * 1.f / 4.f * sqrt(5.f * PI) * (-x2 - z2 + 2 * y2);
    Basis[7] = 1.0 / 4.0 * 1.f / 2.f * sqrt(15.f * PI) * y * x;
    Basis[8] = 1.0 / 4.0 * 1.f / 4.f * sqrt(15.f * PI) * (x2 - z2);

	vec3 Diffuse = vec3(0,0,0);

	vec3 F0 = vec3(0.2,0.2,0.2);
	float Roughness = 0.5;
	vec3 N = normalize(vec4(v2f_ViewSpaceNormal,1.0f)).xyz;//viewMatrix * 
	vec3 V = -normalize(v2f_FragPosInViewSpace);
	//vec3 R = reflect(-V, N); 
	F0        = FresnelSchlickRoughness(max(dot(N, V), 0.0), F0, Roughness);
	vec2 EnvBRDF  = texture(u_BRDFLut, vec2(max(dot(N, V), 0.0), Roughness)).rg;
	vec3 LUT = (F0 * EnvBRDF.x + EnvBRDF.y);

	for (int i = 0; i < 9; i++)
		Diffuse += u_Coef[i] * Basis[i] * (1-LUT);
	Albedo_ = vec4(Diffuse);
}

结果展示


只有漫反射的效果:

只有镜面反射的效果:

相关推荐
zaizai100717 天前
WebGL编程指南 - 颜色与纹理续
图形学
zaizai100720 天前
WebGL编程指南 - 绘制和变换三角形
图形学
zaizai100721 天前
WebGL编程指南 - 入门续
图形学
闲人编程1 个月前
使用Python实现图形学的阴影贴图算法
python·算法·图形学·贴图·阴影贴图
闲人编程1 个月前
使用Python实现图形学的纹理映射算法
开发语言·python·算法·图形学·纹理映射
闲人编程1 个月前
使用Python实现图形学的环境映射算法
开发语言·python·算法·图形学·环境映射
闲人编程1 个月前
Python实现图形学曲线和曲面的Bezier曲线算法
开发语言·python·算法·图形学·曲线·曲面·bezier
CaptainHarryChen1 个月前
从 Affine Particle-In-Cell (APIC) 到 Material Point Method (MPM 物质点法)
图形学·物理仿真·mpm·仿真算法
Jozky863 个月前
图形学论文笔记
笔记·图形学
赵青青3 个月前
DirectX9(D3D9)游戏开发:高光时刻录制和共享纹理的踩坑
图形学