optimizer和loss.backward()相关函数

optimizer.zero_grad() # 梯度清零(一定要先进行梯度清零,这样tensor里面的grad就不会累加)

loss.backward()是用来求导的

optimizer.step()一般来说根据求来的导数进行梯度下降算法来更新参数

上面的顺序步骤不能变

相关推荐
Rorsion1 小时前
PyTorch实现二分类(单特征输出+单层神经网络)
人工智能·pytorch·分类
不懒不懒9 小时前
【从零开始:PyTorch实现MNIST手写数字识别全流程解析】
人工智能·pytorch·python
工程师老罗1 天前
基于Pytorch的YOLOv1 的网络结构代码
人工智能·pytorch·yolo
JarryStudy1 天前
HCCL与PyTorch集成 hccl_comm.cpp DDP后端注册全流程
人工智能·pytorch·python·cann
Eloudy1 天前
用 Python 直写 CUDA Kernel的技术,CuTile、TileLang、Triton 与 PyTorch 的深度融合实践
人工智能·pytorch
Rorsion1 天前
PyTorch实现线性回归
人工智能·pytorch·线性回归
骇城迷影1 天前
Makemore 核心面试题大汇总
人工智能·pytorch·python·深度学习·线性回归
mailangduoduo1 天前
零基础教学连接远程服务器部署项目——VScode版本
服务器·pytorch·vscode·深度学习·ssh·gpu算力
多恩Stone1 天前
【3D AICG 系列-6】OmniPart 训练流程梳理
人工智能·pytorch·算法·3d·aigc
前端摸鱼匠2 天前
YOLOv8 环境配置全攻略:Python、PyTorch 与 CUDA 的和谐共生
人工智能·pytorch·python·yolo·目标检测