optimizer和loss.backward()相关函数

optimizer.zero_grad() # 梯度清零(一定要先进行梯度清零,这样tensor里面的grad就不会累加)

loss.backward()是用来求导的

optimizer.step()一般来说根据求来的导数进行梯度下降算法来更新参数

上面的顺序步骤不能变

相关推荐
love_and_hope3 小时前
Pytorch学习--神经网络--搭建小实战(手撕CIFAR 10 model structure)和 Sequential 的使用
人工智能·pytorch·python·深度学习·学习
好喜欢吃红柚子10 小时前
万字长文解读空间、通道注意力机制机制和超详细代码逐行分析(SE,CBAM,SGE,CA,ECA,TA)
人工智能·pytorch·python·计算机视觉·cnn
羊小猪~~10 小时前
神经网络基础--什么是正向传播??什么是方向传播??
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习
写代码的小阿帆13 小时前
pytorch实现深度神经网络DNN与卷积神经网络CNN
pytorch·cnn·dnn
丕羽1 天前
【Pytorch】基本语法
人工智能·pytorch·python
Shy9604182 天前
Pytorch实现transformer语言模型
人工智能·pytorch
周末不下雨2 天前
跟着小土堆学习pytorch(六)——神经网络的基本骨架(nn.model)
pytorch·神经网络·学习
蜡笔小新星2 天前
针对初学者的PyTorch项目推荐
开发语言·人工智能·pytorch·经验分享·python·深度学习·学习
矩阵猫咪2 天前
【深度学习】时间序列预测、分类、异常检测、概率预测项目实战案例
人工智能·pytorch·深度学习·神经网络·机器学习·transformer·时间序列预测
zs1996_2 天前
深度学习注意力机制类型总结&pytorch实现代码
人工智能·pytorch·深度学习