基于 PyTorch 实现 MNIST 手写数字识别

一、数据准备

首先,我们要获取 MNIST 数据集。PyTorch 内置了方便的函数,能直接下载该数据集。下载完成后,利用 torchvision 的预处理模块,对数据进行转换,比如将图像转为张量,并进行归一化操作,让数据更适合神经网络处理。接着,通过 torch.utils.data 的 DataLoader,创建数据迭代器,这样在训练和测试时就能按批次获取数据了。

二、数据可视化

为了更直观地了解数据,我们可以将 MNIST 的源数据进行可视化。借助 matplotlib 库,能把手写数字图像展示出来,还可以标注出每个图像对应的真实标签,这样能让我们对要处理的数据有更清晰的认识。

三、构建神经网络模型

我们构建的神经网络包含两个隐含层,每层使用 ReLU 激活函数,它能有效解决梯度消失问题,加快网络训练。输出层使用 softmax 激活函数,将输出转化为概率分布,方便我们判断数字类别。最后,通过 torch.max 函数找出输出张量中最大值对应的索引,这个索引就是模型预测的数字类别。

四、模型训练与优化

实例化模型后,定义损失函数和优化器。这里使用交叉熵损失函数,它适合多分类任务;优化器选择 SGD,并设置合适的学习率和动量。在训练过程中,我们会动态调整学习率,让模型更好地收敛。同时,记录训练过程中的损失和准确率,以及在测试集上的表现,通过这些指标来评估模型的训练效果。

五、结果可视化

训练完成后,我们可以将训练过程中的损失变化进行可视化。通过绘制损失曲线,能清晰地看到模型在训练过程中损失是如何逐渐降低的,从而直观地了解模型的学习过程。

通过这个 MNIST 手写数字识别的实例,我们能很好地掌握使用 PyTorch 构建、训练神经网络的基本流程,为后续深入学习深度学习打下坚实的基础。

相关推荐
陈天伟教授8 小时前
基于学习的人工智能(3)机器学习基本框架
人工智能·学习·机器学习·知识图谱
毕设源码-钟学长8 小时前
【开题答辩全过程】以 高校课程学习评价系统设计与实现为例,包含答辩的问题和答案
学习
fruge10 小时前
从第三方库中偷师:学习 Lodash 的函数封装技巧
学习
噜~噜~噜~12 小时前
最大熵原理(Principle of Maximum Entropy,MaxEnt)的个人理解
深度学习·最大熵原理
lingggggaaaa12 小时前
免杀对抗——C2远控篇&C&C++&DLL注入&过内存核晶&镂空新增&白加黑链&签名程序劫持
c语言·c++·学习·安全·网络安全·免杀对抗
陈天伟教授13 小时前
基于学习的人工智能(5)机器学习基本框架
人工智能·学习·机器学习
我先去打把游戏先13 小时前
ESP32学习笔记(基于IDF):基于OneNet的ESP32的OTA功能
笔记·物联网·学习·云计算·iphone·aws
初願致夕霞13 小时前
学习笔记——基础hash思想及其简单C++实现
笔记·学习·哈希算法
小女孩真可爱13 小时前
大模型学习记录(五)-------调用大模型API接口
pytorch·深度学习·学习
hd51cc13 小时前
C++ 学习笔记 名称
笔记·学习