基于 PyTorch 实现 MNIST 手写数字识别

一、数据准备

首先,我们要获取 MNIST 数据集。PyTorch 内置了方便的函数,能直接下载该数据集。下载完成后,利用 torchvision 的预处理模块,对数据进行转换,比如将图像转为张量,并进行归一化操作,让数据更适合神经网络处理。接着,通过 torch.utils.data 的 DataLoader,创建数据迭代器,这样在训练和测试时就能按批次获取数据了。

二、数据可视化

为了更直观地了解数据,我们可以将 MNIST 的源数据进行可视化。借助 matplotlib 库,能把手写数字图像展示出来,还可以标注出每个图像对应的真实标签,这样能让我们对要处理的数据有更清晰的认识。

三、构建神经网络模型

我们构建的神经网络包含两个隐含层,每层使用 ReLU 激活函数,它能有效解决梯度消失问题,加快网络训练。输出层使用 softmax 激活函数,将输出转化为概率分布,方便我们判断数字类别。最后,通过 torch.max 函数找出输出张量中最大值对应的索引,这个索引就是模型预测的数字类别。

四、模型训练与优化

实例化模型后,定义损失函数和优化器。这里使用交叉熵损失函数,它适合多分类任务;优化器选择 SGD,并设置合适的学习率和动量。在训练过程中,我们会动态调整学习率,让模型更好地收敛。同时,记录训练过程中的损失和准确率,以及在测试集上的表现,通过这些指标来评估模型的训练效果。

五、结果可视化

训练完成后,我们可以将训练过程中的损失变化进行可视化。通过绘制损失曲线,能清晰地看到模型在训练过程中损失是如何逐渐降低的,从而直观地了解模型的学习过程。

通过这个 MNIST 手写数字识别的实例,我们能很好地掌握使用 PyTorch 构建、训练神经网络的基本流程,为后续深入学习深度学习打下坚实的基础。

相关推荐
wdfk_prog32 分钟前
[Linux]学习笔记系列 -- [drivers][mmc][mmc_sdio]
linux·笔记·学习
果果燕39 分钟前
今日学习笔记:双向链表、循环链表、栈
笔记·学习·链表
觉醒大王1 小时前
AI写的青基中了
人工智能·笔记·深度学习·学习·职场和发展·学习方法
深鱼~1 小时前
深度剖析ops-transformer:LayerNorm与GEMM的融合优化
人工智能·深度学习·transformer
哈__1 小时前
CANN图优化技术:深度学习模型的编译器魔法
人工智能·深度学习
灰灰勇闯IT1 小时前
神经网络的基石——深度解析 CANN ops-nn 算子库如何赋能昇腾 AI
人工智能·深度学习·神经网络
deephub1 小时前
LLM推理时计算技术详解:四种提升大模型推理能力的方法
人工智能·深度学习·大语言模型·推理时计算
chian-ocean1 小时前
智能多模态助手实战:基于 `ops-transformer` 与开源 LLM 构建 LLaVA 风格推理引擎
深度学习·开源·transformer
慢半拍iii1 小时前
对比源码解读:ops-nn中卷积算子的硬件加速实现原理
人工智能·深度学习·ai·cann
驱动探索者1 小时前
linux mailbox 学习
linux·学习·算法