基于 PyTorch 实现 MNIST 手写数字识别

一、数据准备

首先,我们要获取 MNIST 数据集。PyTorch 内置了方便的函数,能直接下载该数据集。下载完成后,利用 torchvision 的预处理模块,对数据进行转换,比如将图像转为张量,并进行归一化操作,让数据更适合神经网络处理。接着,通过 torch.utils.data 的 DataLoader,创建数据迭代器,这样在训练和测试时就能按批次获取数据了。

二、数据可视化

为了更直观地了解数据,我们可以将 MNIST 的源数据进行可视化。借助 matplotlib 库,能把手写数字图像展示出来,还可以标注出每个图像对应的真实标签,这样能让我们对要处理的数据有更清晰的认识。

三、构建神经网络模型

我们构建的神经网络包含两个隐含层,每层使用 ReLU 激活函数,它能有效解决梯度消失问题,加快网络训练。输出层使用 softmax 激活函数,将输出转化为概率分布,方便我们判断数字类别。最后,通过 torch.max 函数找出输出张量中最大值对应的索引,这个索引就是模型预测的数字类别。

四、模型训练与优化

实例化模型后,定义损失函数和优化器。这里使用交叉熵损失函数,它适合多分类任务;优化器选择 SGD,并设置合适的学习率和动量。在训练过程中,我们会动态调整学习率,让模型更好地收敛。同时,记录训练过程中的损失和准确率,以及在测试集上的表现,通过这些指标来评估模型的训练效果。

五、结果可视化

训练完成后,我们可以将训练过程中的损失变化进行可视化。通过绘制损失曲线,能清晰地看到模型在训练过程中损失是如何逐渐降低的,从而直观地了解模型的学习过程。

通过这个 MNIST 手写数字识别的实例,我们能很好地掌握使用 PyTorch 构建、训练神经网络的基本流程,为后续深入学习深度学习打下坚实的基础。

相关推荐
xiaobai1781 天前
测试工程师入门AI技术 - 前序:跨越焦虑,从优势出发开启学习之旅
人工智能·学习
北岛寒沫1 天前
北京大学国家发展研究院 经济学原理课程笔记(第二十一课 金融学基础)
经验分享·笔记·学习
扑火的小飞蛾1 天前
网络安全小白学习路线图 (基于提供文档库)
学习·安全·web安全
优雅的潮叭1 天前
c++ 学习笔记之 malloc
c++·笔记·学习
小途软件1 天前
用于机器人电池电量预测的Sarsa强化学习混合集成方法
java·人工智能·pytorch·python·深度学习·语言模型
哥布林学者1 天前
吴恩达深度学习课程五:自然语言处理 第一周:循环神经网络 (五)门控循环单元 GRU
深度学习·ai
薛不痒1 天前
深度学习之优化模型(数据预处理,数据增强,调整学习率)
深度学习·学习
昵称已被吞噬~‘(*@﹏@*)’~1 天前
【RL+空战】学习记录03:基于JSBSim构造简易空空导弹模型,并结合python接口调用测试
开发语言·人工智能·python·学习·深度强化学习·jsbsim·空战
我想我不够好。1 天前
学到的知识点 1.8
学习
旖旎夜光1 天前
Linux(9)
linux·学习