【Pytorch】分类问题交叉熵

1️⃣ 为什么分类问题不用 MSE(均方误差)?

表格

复制

场景 标签 预测 MSE 损失
分类 [0,0,1] [0.3,0.3,0.4] (0.4-1)²=0.36
分类 [0,0,1] [0.1,0.2,0.7] (0.7-1)²=0.09

看起来合理,但:

  1. sigmoid/softmax 输出在 0/1 附近梯度几乎为零梯度消失

  2. MSE 把"概率差"当数值差" → 不符合概率直觉;

  3. 收敛慢,还容易卡在鞍点。


2️⃣ 交叉熵(Cross Entropy)思想

一句话 :衡量「真实分布 p」与「预测分布 q」之间的信息差距

公式(离散版):

CE(p,q) = − Σ p(i) log q(i)

  • p 是 one-hot 标签(比如 [0,0,1])

  • q 是 softmax 输出(比如 [0.1,0.2,0.7])

因为 p 只有一个 1,其余为 0,所以求和只剩一项

CE = − log q(正确类)

直观

  • 若 q(正确类)=0.7 → CE ≈ 0.36

  • 若 q(正确类)=0.98 → CE ≈ 0.02
    预测越准,损失越小 ,且梯度不饱和(后面会算给你看)。


3️⃣ 手推一条二分类例子

表格

复制

样本 真实 y 预测 p
1 0.8
0 0.1

二元交叉熵(BCE):

L = − [y log p + (1−y) log(1−p)]

样本 1(猫):

L = − [1·log0.8 + 0·log0.2] = −log0.8 ≈ 0.223

样本 2(狗):

L = − [0·log0.1 + 1·log0.9] = −log0.9 ≈ 0.105

平均损失 ≈ 0.164,预测越离谱,值越大


4️⃣ PyTorch 一行代码算完

Python

复制代码
import torch.nn.functional as F

logits = torch.tensor([[1.0, 2.0, 0.5]])   # 模型输出(未归一化)
target = torch.tensor([1])                  # 正确类别索引

loss = F.cross_entropy(logits, target)
print(loss.item())          #  tensor(0.8309)

内部干了啥

  1. softmax(logits) → 概率

  2. log(softmax) → 对数概率

  3. -log q(正确类) → 损失


5️⃣ 数值稳定性技巧

不要手写:

Python

复制

复制代码
prob = F.softmax(logits)
log_prob = torch.log(prob)
loss = F.nll_loss(log_prob, target)

推荐直接用:

Python

复制代码
loss = F.cross_entropy(logits, target)

内部实现 log-sum-exp 技巧 ,避免 log(softmax) 造成数值溢出。


6️⃣ 对比实验(直观感受)

表格

复制

方法 损失曲线 梯度大小 收敛速度
MSE 平坦区早 极小
CE 无平坦区 稳定

7️⃣ 小结口诀(背下来)

分类用 CE,回归用 MSE
CE = −log q(对类)
PyTorch:F.cross_entropy(logits, target)
别手写 softmax+log!


8️⃣ 课后 5 分钟动手

  1. F.cross_entropy 算一条三分类样本。

  2. logits 乘 10 再算一次,观察损失变化。

  3. 对比 F.mse_lossF.cross_entropy 的梯度大小(.grad)。

相关推荐
亚马逊云开发者15 小时前
Q CLI 助力合合信息实现 Aurora 的升级运营
人工智能
超龄超能程序猿16 小时前
YOLOv8 五大核心模型:从检测到分类的介绍
yolo·分类·数据挖掘
全栈胖叔叔-瓜州16 小时前
关于llamasharp 大模型多轮对话,模型对话无法终止,或者输出角色标识User:,或者System等角色标识问题。
前端·人工智能
坚果派·白晓明17 小时前
AI驱动的命令行工具集x-cmd鸿蒙化适配后通过DevBox安装使用
人工智能·华为·harmonyos
GISer_Jing17 小时前
前端营销技术实战:数据+AI实战指南
前端·javascript·人工智能
Dekesas969517 小时前
【深度学习】基于Faster R-CNN的黄瓜幼苗智能识别与定位系统,农业AI新突破
人工智能·深度学习·r语言
大佐不会说日语~18 小时前
Spring AI Alibaba 的 ChatClient 工具注册与 Function Calling 实践
人工智能·spring boot·python·spring·封装·spring ai
CeshirenTester18 小时前
Playwright元素定位详解:8种定位策略实战指南
人工智能·功能测试·程序人生·单元测试·自动化
世岩清上18 小时前
AI驱动的智能运维:从自动化到自主化的技术演进与架构革新
运维·人工智能·自动化
K2_BPM18 小时前
告别“单点智能”:AI Agent如何重构企业生产力与流程?
人工智能