【Pytorch】分类问题交叉熵

1️⃣ 为什么分类问题不用 MSE(均方误差)?

表格

复制

场景 标签 预测 MSE 损失
分类 [0,0,1] [0.3,0.3,0.4] (0.4-1)²=0.36
分类 [0,0,1] [0.1,0.2,0.7] (0.7-1)²=0.09

看起来合理,但:

  1. sigmoid/softmax 输出在 0/1 附近梯度几乎为零梯度消失

  2. MSE 把"概率差"当数值差" → 不符合概率直觉;

  3. 收敛慢,还容易卡在鞍点。


2️⃣ 交叉熵(Cross Entropy)思想

一句话 :衡量「真实分布 p」与「预测分布 q」之间的信息差距

公式(离散版):

CE(p,q) = − Σ p(i) log q(i)

  • p 是 one-hot 标签(比如 [0,0,1])

  • q 是 softmax 输出(比如 [0.1,0.2,0.7])

因为 p 只有一个 1,其余为 0,所以求和只剩一项

CE = − log q(正确类)

直观

  • 若 q(正确类)=0.7 → CE ≈ 0.36

  • 若 q(正确类)=0.98 → CE ≈ 0.02
    预测越准,损失越小 ,且梯度不饱和(后面会算给你看)。


3️⃣ 手推一条二分类例子

表格

复制

样本 真实 y 预测 p
1 0.8
0 0.1

二元交叉熵(BCE):

L = − [y log p + (1−y) log(1−p)]

样本 1(猫):

L = − [1·log0.8 + 0·log0.2] = −log0.8 ≈ 0.223

样本 2(狗):

L = − [0·log0.1 + 1·log0.9] = −log0.9 ≈ 0.105

平均损失 ≈ 0.164,预测越离谱,值越大


4️⃣ PyTorch 一行代码算完

Python

复制代码
import torch.nn.functional as F

logits = torch.tensor([[1.0, 2.0, 0.5]])   # 模型输出(未归一化)
target = torch.tensor([1])                  # 正确类别索引

loss = F.cross_entropy(logits, target)
print(loss.item())          #  tensor(0.8309)

内部干了啥

  1. softmax(logits) → 概率

  2. log(softmax) → 对数概率

  3. -log q(正确类) → 损失


5️⃣ 数值稳定性技巧

不要手写:

Python

复制

复制代码
prob = F.softmax(logits)
log_prob = torch.log(prob)
loss = F.nll_loss(log_prob, target)

推荐直接用:

Python

复制代码
loss = F.cross_entropy(logits, target)

内部实现 log-sum-exp 技巧 ,避免 log(softmax) 造成数值溢出。


6️⃣ 对比实验(直观感受)

表格

复制

方法 损失曲线 梯度大小 收敛速度
MSE 平坦区早 极小
CE 无平坦区 稳定

7️⃣ 小结口诀(背下来)

分类用 CE,回归用 MSE
CE = −log q(对类)
PyTorch:F.cross_entropy(logits, target)
别手写 softmax+log!


8️⃣ 课后 5 分钟动手

  1. F.cross_entropy 算一条三分类样本。

  2. logits 乘 10 再算一次,观察损失变化。

  3. 对比 F.mse_lossF.cross_entropy 的梯度大小(.grad)。

相关推荐
李永奉19 小时前
杰理芯片SDK开发-ENC双麦降噪配置/调试教程
人工智能·单片机·嵌入式硬件·物联网·语音识别
Dfreedom.20 小时前
图像滤波:非线性滤波与边缘保留技术
图像处理·人工智能·opencv·计算机视觉·非线性滤波·图像滤波
小白跃升坊20 小时前
基于1Panel的AI运维
linux·运维·人工智能·ai大模型·教学·ai agent
kicikng20 小时前
走在智能体前沿:智能体来了(西南总部)的AI Agent指挥官与AI调度官实践
人工智能·系统架构·智能体协作·ai agent指挥官·ai调度官·应用层ai
测试者家园20 小时前
测试用例智能生成:是效率革命,还是“垃圾进,垃圾出”的新挑战?
人工智能·职场和发展·测试用例·测试策略·质量效能·智能化测试·用例设计
GIS瞧葩菜20 小时前
Cesium 轴拖拽 + 旋转圈拖拽 核心数学知识
人工智能·算法·机器学习
njsgcs20 小时前
dqn和cnn有什么区别 dqn怎么保存训练经验到本地
人工智能·神经网络·cnn
AndrewHZ20 小时前
【AI黑话日日新】什么是AI智能体?
人工智能·算法·语言模型·大模型·llm·ai智能体
cd_9492172120 小时前
九昆仑低碳科技:所罗门群岛全国森林碳汇项目开发合作白皮书
大数据·人工智能·科技
工程师老罗20 小时前
目标检测数据标注的工具与使用方法
人工智能·目标检测·计算机视觉