PyTorch 实现多种 CNN 模型并采用集成方法提升 CIFAR-10 分类性能

在计算机视觉领域,图像分类是一项基础且关键的任务。CIFAR-10 数据集作为入门级图像分类基准,包含 10 类共 60000 张 32×32 彩色图像,常用于验证模型性能。

一、环境准备与模块导入

首先导入 PyTorch 及相关工具库,用于模型构建、数据处理和训练优化:

二、超参数定义

定义训练过程中的关键超参数:

三、多种 CNN 模型定义

我们实现四种 CNN 模型,以下分别解析其结构设计。

1. CNNNet

2. Net

3. LeNet

4. VGG

四、CIFAR-10 数据加载与预处理

加载 CIFAR-10 并进行预处理,训练集采用数据增强提升泛化能力:

五、模型集成:投票机制

模型集成通过结合多个模型的预测结果提升性能,本文采用投票机制(多数表决):对每个样本,收集所有模型的预测类别,选择得票最多的类别作为最终预测。

六、实验结果与分析

单个简单模型(如 CNNNet、LeNet)在 CIFAR-10 上的准确率通常在 50%-60% 区间。

模型集成(投票机制)可有效提升准确率,通常比单个模型高 5%-10%,这是因为不同模型的预测误差具有互补性。

VGG 等深层模型单独训练也能取得较好性能(迭代多次后可达 70% 以上),与集成方法结合后性能可进一步突破。

七、总结与展望

本文基于 PyTorch 实现了多种 CNN 模型,并通过投票机制的模型集成方法提升了 CIFAR-10 图像分类性能。模型集成利用多模型的互补性,是提升泛化能力的有效手段。

未来可进一步探索:

尝试 ResNet、DenseNet 等更多模型的集成。

采用加权投票、堆叠泛化等更复杂的集成策略。

结合迁移学习提升小数据集上的模型性能。

相关推荐
禁默17 分钟前
打通 AI 与信号处理的“任督二脉”:Ascend SIP Boost 加速库深度实战
人工智能·信号处理·cann
心疼你的一切36 分钟前
昇腾CANN实战落地:从智慧城市到AIGC,解锁五大行业AI应用的算力密码
数据仓库·人工智能·深度学习·aigc·智慧城市·cann
AI绘画哇哒哒39 分钟前
【干货收藏】深度解析AI Agent框架:设计原理+主流选型+项目实操,一站式学习指南
人工智能·学习·ai·程序员·大模型·产品经理·转行
数据分析能量站41 分钟前
Clawdbot(现名Moltbot)-现状分析
人工智能
那个村的李富贵1 小时前
CANN加速下的AIGC“即时翻译”:AI语音克隆与实时变声实战
人工智能·算法·aigc·cann
二十雨辰1 小时前
[python]-AI大模型
开发语言·人工智能·python
陈天伟教授1 小时前
人工智能应用- 语言理解:04.大语言模型
人工智能·语言模型·自然语言处理
Luhui Dev1 小时前
AI 与数学的融合:技术路径、应用前沿与未来展望(2026 版)
人工智能
chian-ocean1 小时前
量化加速实战:基于 `ops-transformer` 的 INT8 Transformer 推理
人工智能·深度学习·transformer
那个村的李富贵1 小时前
从CANN到Canvas:AI绘画加速实战与源码解析
人工智能·ai作画·cann