OpenCV 06(图像的基本变换)

一、图像的基本变换

1.1 图像的放大与缩小

  • resize(src, dsize, dst, fx, fy, interpolation)

  • src: 要缩放的图片

  • dsize: 缩放之后的图片大小, 元组和列表表示均可.

  • dst: 可选参数, 缩放之后的输出图片

  • fx, fy:x轴和y轴的缩放比 , 即宽度和高度的缩放比.

  • interpolation: 插值算法, 主要有以下几种:

  • INTER_NEAREST, 邻近插值, 速度快, 效果差.

  • INTER_LINEAR, 双线性插值, 使用原图中的4个点进行插值. 默认.

  • INTER_CUBIC, 三次插值, 原图中的16个点.

  • INTER_AREA, 区域插值, 效果最好, 计算时间最长.

python 复制代码
 import cv2
  import numpy as np
  
  #导入图片
  dog = cv2.imread('./dog.jpeg')
  
  # x,y放大一倍
  new_dog = cv2.resize(dog,dsize=(800, 800), interpolation=cv2.INTER_NEAREST)
  cv2.imshow('dog', new_dog)
  cv2.waitKey(0)
  cv2.destroyAllWindows()

1.2 图像的翻转

  • flip(src, flipCode)

  • flipCode =0 表示上下翻转

  • flipCode >0 表示左右翻转

  • flipCode <0 上下 + 左右

python 复制代码
# 翻转
import cv2
import numpy as np

#导入图片
dog = cv2.imread('./dog.jpeg')

new_dog = cv2.flip(dog, flipCode=-1)
cv2.imshow('dog', new_dog)
cv2.waitKey(0)
cv2.destroyAllWindows()

1.3 图像的旋转

  • rotate(img, rotateCode)

  • ROTATE_90_CLOCKWISE 90度顺时针

  • ROTATE_180 180度

  • ROTATE_90_COUNTERCLOCKWISE 90度逆时针

python 复制代码
# 旋转
import cv2
import numpy as np

#导入图片
dog = cv2.imread('./dog.jpeg')

new_dog = cv2.rotate(dog, rotateCode=cv2.cv2.ROTATE_90_COUNTERCLOCKWISE)
cv2.imshow('dog', new_dog)
cv2.waitKey(0)
cv2.destroyAllWindows()

1.4 仿射变换之图像平移

  • 仿射变换是图像旋转, 缩放, 平移的总称.具体的做法是通过一个矩阵和和原图片坐标进行计算, 得到新的坐标, 完成变换. 所以关键就是这个矩阵.

  • warpAffine(src, M, dsize, flags, mode, value)

  • M:变换矩阵

  • dsize: 输出图片大小

  • flag: 与resize中的插值算法一致

  • mode: 边界外推法标志

  • value: 填充边界值

  • 平移矩阵

python 复制代码
 # 仿射变换之平移
  import cv2
  import numpy as np
  
  #导入图片
  dog = cv2.imread('./dog.jpeg')
  
  h, w, ch = dog.shape
  M = np.float32([[1, 0, 100], [0, 1, 0]])
  # 注意opencv中是先宽度, 再高度
  new = cv2.warpAffine(dog, M, (w, h))
  
  cv2.imshow('new', new)
  cv2.waitKey(0)
  cv2.destroyAllWindows()

1.5 仿射变换之获取变换矩阵

仿射变换的难点就是计算变换矩阵, OpenCV提供了计算变换矩阵的API

  • getRotationMatrix2D(center, angle, scale)

  • center 中心点 , 以图片的哪个点作为旋转时的中心点.

  • angle 角度: 旋转的角度, 按照逆时针旋转.

  • scale 缩放比例: 想把图片进行什么样的缩放.

python 复制代码
# 仿射变换之平移
import cv2
import numpy as np

#导入图片
dog = cv2.imread('./dog.jpeg')

h, w, ch = dog.shape
# M = np.float32([[1, 0, 100], [0, 1, 0]])

# 注意旋转的角度为逆时针.
# M = cv2.getRotationMatrix2D((100, 100), 15, 1.0)
# 以图像中心点旋转
M = cv2.getRotationMatrix2D((w/2, h/2), 15, 1.0)
# 注意opencv中是先宽度, 再高度
new = cv2.warpAffine(dog, M, (w, h))

cv2.imshow('new', new)
cv2.waitKey(0)
cv2.destroyAllWindows()
  • getAffineTransform(src[], dst[]) 通过三点可以确定变换后的位置, 相当于解方程, 3个点对应三个方程, 能解出偏移的参数和旋转的角度.

  • src原目标的三个点

  • dst对应变换后的三个点

python 复制代码
 # 通过三个点来确定M
  # 仿射变换之平移
  import cv2
  import numpy as np
  
  #导入图片
  dog = cv2.imread('./dog.jpeg')
  
  h, w, ch = dog.shape
  
  # 一般是横向和纵向的点, 所以一定会有2个点横坐标相同, 2个点纵坐标相同
  src = np.float32([[200, 100], [300, 100], [200, 300]])
  dst = np.float32([[100, 150], [360, 200], [280, 120]])
  M = cv2.getAffineTransform(src, dst)
  # 注意opencv中是先宽度, 再高度
  new = cv2.warpAffine(dog, M, (w, h))
  
  cv2.imshow('new', new)
  cv2.waitKey(0)
  cv2.destroyAllWindows()

1.6 透视变换

透视变换就是将一种坐标系变换成另一种坐标系. 简单来说可以把一张"斜"的图变"正".

  • warpPerspective(img, M, dsize,....)

  • 对于透视变换来说, M是一个3 * 3 的矩阵.

  • getPerspectiveTransform(src, dst) 获取透视变换的变换矩阵, 需要4个点, 即图片的4个角.

python 复制代码
# 透视变换
  import cv2
  import numpy as np
  
  #导入图片
  img = cv2.imread('./123.png')
  print(img.shape)
  
  src = np.float32([[100, 1100], [2100, 1100], [0, 4000], [2500, 3900]])
  dst = np.float32([[0, 0], [2300, 0], [0, 3000], [2300, 3000]])
  M = cv2.getPerspectiveTransform(src, dst)
  
  new = cv2.warpPerspective(img, M, (2300, 3000))
  cv2.namedWindow('img', cv2.WINDOW_NORMAL)
  cv2.resizeWindow('img', 640, 480)
  
  cv2.namedWindow('new', cv2.WINDOW_NORMAL)
  cv2.resizeWindow('new', 640, 480)
  
  cv2.imshow('img', img)
  cv2.imshow('new', new)
  
  
  cv2.waitKey(0)
  cv2.destroyAllWindows()
相关推荐
奔跑草-1 分钟前
【AI日报】每日AI最新消息2026-01-06
人工智能·github
雨大王5122 分钟前
工业AI大模型优化汽车生产排产:技术原理与实践案例
人工智能·汽车
byzh_rc12 分钟前
[机器学习-从入门到入土] 拓展-最小二乘法
人工智能·机器学习·最小二乘法
阿里巴啦14 分钟前
React+go实现AI 图像生成落地实践:文生图、图生图的工程项目
人工智能·react.js·ai作画·七牛云·ai生图·ai图生图
Codebee16 分钟前
AI 时代的人机协同:在智慧与执行之间寻找平衡
人工智能
love530love21 分钟前
EPGF 新手教程 12在 PyCharm(中文版 GUI)中创建 Poetry 项目环境,并把 Poetry 做成“项目自包含”(工具本地化为必做环节)
开发语言·ide·人工智能·windows·python·pycharm·epgf
XC1314890826722 分钟前
ToB获客破局:精准数据+AI外呼,重构效率新模式
大数据·人工智能·重构
应用市场26 分钟前
图片格式完全指南——从JPEG到AVIF的技术原理与选型
网络·人工智能·安全·汽车
2501_9418091428 分钟前
在圣保罗智能物流场景中构建快递实时调度与高并发任务管理平台的工程设计实践经验分享
大数据·人工智能
hg011834 分钟前
湖南电动汽车年出口额破百亿
人工智能