《向量数据库指南》——向量数据库内核面临的技术挑战及应对措施

最近一年,以 ChatGPT、LLaMA 为代表的大语言模型的兴起,将向量数据库的发展推向了新的高度。

向量数据库是一种在机器学习和人工智能领域日益流行的新型数据库,它能够帮助支持基于神经网络而不是关键字的新型搜索引擎。向量数据库不同于传统的关系型数据库,例如 PostgreSQL,其最初设计用于以行和列的形式存储表格数据。它也明显不同于较新的 NoSQL 数据库,例如 MongoDB,其主要是将数据存储在 JSON 文档中。

向量数据库是为存储和检索一种特定类型的数据而设计的:向量嵌入。它们本质上是机器学习过程的推理部分中运行新数据的过滤器。

在大模型部署中,向量数据库可用于存储大模型训练产生的向量嵌入。通过存储代表大模型广泛训练的潜在数十亿个向量嵌入,向量数据库执行最重要的相似性搜索,找到用户提示(他或她提出的问题)和特定向量嵌入之间的最佳匹配。

虽然目前业内很多关系型和非关系型数据库已被修改为存储向量嵌入,但它们最初都不是为了存储和提供此类数据而设计的。那么,原生地支持向量嵌入地向量数据库的内核是如何设计的,这类向量数据库与其他插件版向量数据库的区别是什么?向量数据库的研发过程中有哪些技术难题?带着这些问题,我们邀请到了北京阿哇科技的创始人李洁,与他一起探讨向量数据库内核面临的技术挑战及应对措施。

相关推荐
BFT白芙堂9 分钟前
睿尔曼系列机器人——以创新驱动未来,重塑智能协作新生态(上)
人工智能·机器学习·机器人·协作机器人·复合机器人·睿尔曼机器人
aneasystone本尊15 分钟前
使用 MCP 让 Claude Code 集成外部工具
人工智能
醇醛酸醚酮酯23 分钟前
Qt项目锻炼——TODO清单(二)
开发语言·数据库·qt
静心问道25 分钟前
SEW:无监督预训练在语音识别中的性能-效率权衡
人工智能·语音识别
xwz小王子32 分钟前
从LLM到WM:大语言模型如何进化成具身世界模型?
人工智能·语言模型·自然语言处理
我爱一条柴ya32 分钟前
【AI大模型】深入理解 Transformer 架构:自然语言处理的革命引擎
人工智能·ai·ai作画·ai编程·ai写作
静心问道33 分钟前
FLAN-T5:规模化指令微调的语言模型
人工智能·语言模型·自然语言处理
李师兄说大模型34 分钟前
KDD 2025 | 地理定位中的群体智能:一个多智能体大型视觉语言模型协同框架
人工智能·深度学习·机器学习·语言模型·自然语言处理·大模型·deepseek
静心问道35 分钟前
SqueezeBERT:计算机视觉能为自然语言处理在高效神经网络方面带来哪些启示?
人工智能·计算机视觉·自然语言处理
Sherlock Ma35 分钟前
百度开源文心一言4.5:论文解读和使用入门
人工智能·百度·自然语言处理·开源·大模型·文心一言·多模态