使用LlamaIndex构建自己的PandasAI

推荐:使用 NSDT场景编辑器 快速搭建3D应用场景

Pandas AI 是一个 Python 库,它利用生成 AI 的强大功能来增强流行的数据分析库 Pandas。只需一个简单的提示,Pandas AI 就可以让你执行复杂的数据清理、分析和可视化,而这以前需要很多行代码。

除了处理数字之外,Pandas AI还理解自然语言。您可以用简单的英语询问有关数据的问题,它将以日常语言提供摘要和见解,使您免于破译复杂的图形和表格。

在下面的示例中,我们提供了一个 Pandas 数据帧,并要求生成 AI 创建条形图。结果令人印象深刻。

pandas_ai.run(df, prompt='Plot the bar chart of type of media for each year release, using different colors.')

**注意:**代码示例来自 Pandas AI:您的生成式 AI 驱动的数据分析指南教程。

在这篇文章中,我们将使用LlamaIndex来创建类似的工具,这些工具可以理解Pandas数据框架并产生复杂的结果,如上所示。

LlamaIndex支持通过聊天和代理对数据进行自然语言查询。它允许大型语言模型大规模解释私有数据,而无需对新数据进行重新训练。它将大型语言模型与各种数据源和工具集成在一起。LlamaIndex是一个数据框架,只需几行代码即可轻松创建带有PDF应用程序的聊天。

建立

您可以使用该命令安装 Python 库。pip

pip install llama-index

默认情况下,LlamaIndex使用OpenAI模型进行文本生成以及检索和嵌入。为了轻松运行代码,我们必须设置 .我们可以在新的 API 令牌页面上免费注册并获取 API 密钥。gpt-3.5-turbo``text-embedding-ada-002``OPENAI_API_KEY

import os
os.environ["OPENAI_API_KEY"] = "sk-xxxxxx"

它们还支持Anthropic,Hugging Face,PaLM和更多模型的集成。您可以通过阅读模块的文档来了解有关它的所有信息。

熊猫查询引擎

让我们进入创建自己的PandasAI的主要主题。安装库并设置 API 密钥后,我们将创建一个简单的城市数据帧,以城市名称和人口作为列。

import pandas as pd
from llama_index.query_engine.pandas_query_engine import PandasQueryEngine

df = pd.DataFrame(
    {"city": ["New York", "Islamabad", "Mumbai"], "population": [8804190, 1009832, 12478447]}
)

使用 ,我们将创建一个查询引擎来加载数据帧并为其编制索引。PandasQueryEngine

之后,我们将编写一个查询并显示响应。

query_engine = PandasQueryEngine(df=df)

response = query_engine.query(
    "What is the city with the lowest population?",
)

如我们所见,它开发了 Python 代码,用于在数据帧中显示人口最少的城市。

> Pandas Instructions:
```
eval("df.loc[df['population'].idxmin()]['city']")
```
eval("df.loc[df['population'].idxmin()]['city']")
> Pandas Output: Islamabad

而且,如果你打印回复,你会得到"伊斯兰堡"。这很简单,但令人印象深刻。您不必提出自己的逻辑或围绕代码进行实验。只需输入问题,您就会得到答案。

print(response)

Islamabad

您还可以使用响应元数据打印结果背后的代码。

print(response.metadata["pandas_instruction_str"])

eval("df.loc[df['population'].idxmin()]['city']")

全球优酷统计分析

在第二个示例中,我们将从 Kaggle 加载 2023 年全球 YouTube 统计数据集并执行一些基本面分析。这是从简单示例迈出的一步。

我们将用于将数据集加载到查询引擎中。然后我们将编写提示,仅显示具有缺失值和缺失值数量的列。read_csv

df_yt = pd.read_csv("Global YouTube Statistics.csv")
query_engine = PandasQueryEngine(df=df_yt, verbose=True)

response = query_engine.query(
    "List the columns with missing values and the number of missing values. Only show missing values columns.",
)

> Pandas Instructions:
```
df.isnull().sum()[df.isnull().sum() > 0]
```
df.isnull().sum()[df.isnull().sum() > 0]
> Pandas Output: category                                    46
Country                                    122
Abbreviation                               122
channel_type                                30
video_views_rank                             1
country_rank                               116
channel_type_rank                           33
video_views_for_the_last_30_days            56
subscribers_for_last_30_days               337
created_year                                 5
created_month                                5
created_date                                 5
Gross tertiary education enrollment (%)    123
Population                                 123
Unemployment rate                          123
Urban_population                           123
Latitude                                   123
Longitude                                  123
dtype: int64

现在,我们将直接询问有关流行频道类型的问题。在我看来,LlamdaIndex查询引擎非常准确,还没有产生任何幻觉。

response = query_engine.query(
    "Which channel type have the most views.",
)

> Pandas Instructions:
```
eval("df.groupby('channel_type')['video views'].sum().idxmax()")
```
eval("df.groupby('channel_type')['video views'].sum().idxmax()")
> Pandas Output: Entertainment
Entertainment

最后,我们将要求它可视化barchat,结果是惊人的。

response = query_engine.query(
    "Visualize barchat of top ten youtube channels based on subscribers and add the title.",
)

> Pandas Instructions:
```
eval("df.nlargest(10, 'subscribers')[['Youtuber', 'subscribers']].plot(kind='bar', x='Youtuber', y='subscribers', title='Top Ten YouTube Channels Based on Subscribers')")
```
eval("df.nlargest(10, 'subscribers')[['Youtuber', 'subscribers']].plot(kind='bar', x='Youtuber', y='subscribers', title='Top Ten YouTube Channels Based on Subscribers')")
> Pandas Output: AxesSubplot(0.125,0.11;0.775x0.77)

通过简单的提示和查询引擎,我们可以自动化数据分析并执行复杂的任务。喇嘛指数还有更多。我强烈建议您阅读官方文档并尝试构建令人惊叹的东西。

结论

总之,LlamaIndex是一个令人兴奋的新工具,它允许开发人员创建自己的PandasAI - 利用大型语言模型的强大功能进行直观的数据分析和对话。通过使用 LlamaIndex 索引和嵌入数据集,您可以对私有数据启用高级自然语言功能,而不会影响安全性或重新训练模型。

这只是一个开始,使用LlamaIndex,您可以构建文档,聊天机器人,自动化AI,知识图谱,AI SQL查询引擎,全栈Web应用程序的问答,并构建私有生成AI应用程序。

原文链接:使用LlamaIndex构建自己的PandasAI (mvrlink.com)

相关推荐
深圳市青牛科技实业有限公司11 分钟前
【青牛科技】应用方案|D2587A高压大电流DC-DC
人工智能·科技·单片机·嵌入式硬件·机器人·安防监控
水豚AI课代表31 分钟前
分析报告、调研报告、工作方案等的提示词
大数据·人工智能·学习·chatgpt·aigc
几两春秋梦_32 分钟前
符号回归概念
人工智能·数据挖掘·回归
用户691581141651 小时前
Ascend Extension for PyTorch的源码解析
人工智能
用户691581141652 小时前
Ascend C的编程模型
人工智能
成富2 小时前
文本转SQL(Text-to-SQL),场景介绍与 Spring AI 实现
数据库·人工智能·sql·spring·oracle
CSDN云计算3 小时前
如何以开源加速AI企业落地,红帽带来新解法
人工智能·开源·openshift·红帽·instructlab
艾派森3 小时前
大数据分析案例-基于随机森林算法的智能手机价格预测模型
人工智能·python·随机森林·机器学习·数据挖掘
hairenjing11233 小时前
在 Android 手机上从SD 卡恢复数据的 6 个有效应用程序
android·人工智能·windows·macos·智能手机
小蜗子3 小时前
Multi‐modal knowledge graph inference via media convergenceand logic rule
人工智能·知识图谱