基于HOG特征提取和GRNN神经网络的人脸表情识别算法matlab仿真,测试使用JAFFE表情数据库

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

1.HOG特征提取

2.GRNN神经网络

3.JAFFE表情数据库

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

matlab2022a

3.部分核心程序

...............................................................
%%
NAME = '悲伤';%测试则对所有图片进行测试

p0 = ['JAFFE\',NAME];
dt = dir(p0);
p  = [dt.name];
err=[];
correct1 = 0;
figure;
for k = 1:length(dt)-3
    k
    path = dt(k+3,1).name;
    I0      = imread([ 'JAFFE\',NAME,'\',path]); 
    [R,C,K] = size(I0);

    if K == 1
       I1 = I0; 
    else
       I1 = rgb2gray(I0);  
    end
    %特征提取
    Hog_Dat1 = func_feature(I1);
 
    FF2 = sim(net,Hog_Dat1);
 
    subplot(5,6,k);
    imshow(I0);
    
    if round(FF2) == 1
       title('悲伤');
       correct1 = correct1+1;
    end
    if round(FF2) == 2
       title('高兴');
    end
    if round(FF2) == 3
       title('害怕');
    end
    if round(FF2) == 4
       title('惊讶');
    end
    if round(FF2) == 5
       title('生气');
    end
    if round(FF2) == 6
       title('厌恶');
    end
    if round(FF2) == 7
       title('中立');
    end
    
    pause(0.2);
end
err=[err,correct1/(length(dt)-3)];
.......................................................................
%%
NAME = '中立';%测试则对所有图片进行测试

p0 = ['JAFFE\',NAME];
dt = dir(p0);
p  = [dt.name];

correct1 = 0;
figure;
for k = 1:length(dt)-3
    k
    path = dt(k+3,1).name;
    I0      = imread([ 'JAFFE\',NAME,'\',path]); 
    [R,C,K] = size(I0);

    if K == 1
       I1 = I0; 
    else
       I1 = rgb2gray(I0);  
    end
    %特征提取
    Hog_Dat1 = func_feature(I1);
 
    FF2 = sim(net,Hog_Dat1);
 
    subplot(5,6,k);
    imshow(I0);
    
    if round(FF2) == 1
       title('悲伤');
       
    end
    if round(FF2) == 2
       title('高兴');
    end
    if round(FF2) == 3
       title('害怕');
    end
    if round(FF2) == 4
       title('惊讶');
    end
    if round(FF2) == 5
       title('生气');
    end
    if round(FF2) == 6
       title('厌恶');
    end
    if round(FF2) == 7
       title('中立');
       correct1 = correct1+1;
    end
    
    pause(0.2);
end

err=[err,correct1/(length(dt)-3)];

figure;
bar(100*err)
xlabel('1:悲伤, 2:高兴, 3:害怕, 4:惊讶, 5:生气, 6:厌恶, 6:中立');
ylabel('情绪识别率%');
0062

4.算法理论概述

该算法主要由两个部分组成:HOG特征提取和GRNN神经网络。下面将详细介绍这两个部分的原理和数学公式。

1.HOG特征提取

HOG(Histogram of Oriented Gradients)是一种局部特征描述子,它通过对图像局部区域的梯度方向进行统计,提取出图像的结构信息。HOG特征提取主要分为以下几个步骤:

(1)图像预处理

首先,将图像转换为灰度图像,然后对其进行归一化处理,以提高特征的鲁棒性。

(2)计算梯度

使用[-1,0,1]的梯度算子在图像的x和y方向上进行卷积,计算图像的梯度和梯度方向。

(3)划分单元格

将图像划分为若干个小的单元格,并在每个单元格内统计梯度方向直方图。

(4)合并块特征

将相邻的单元格组成一个块,并将块内的特征进行合并,得到块特征。

(5)归一化特征

对块特征进行归一化处理,以提高特征的鲁棒性。

最终得到的HOG特征向量可以用于描述图像的结构信息。

2.GRNN神经网络

GRNN(Generalized Regression Neural Network)是一种基于多层感知机的回归模型,它可以将输入映射到一个连续的输出空间。GRNN神经网络主要分为以下几个部分:

(1)输入层

输入层接收HOG特征向量作为输入。

(2)隐藏层

隐藏层使用Sigmoid函数作为激活函数,将输入映射到一个非线性的隐藏层空间。隐藏层的输出可以表示为:

h=σ(Wx+b)

其中,W是权重矩阵,b是偏置向量,σ是Sigmoid函数。

(3)输出层

输出层使用线性函数将隐藏层映射到输出空间,输出层的输出可以表示为:

y=Wh+b

其中,W是权重矩阵,b是偏置向量。

(4)损失函数和优化算法

GRNN神经网络的损失函数通常采用均方误差(MSE),可以使用梯度下降算法优化网络参数。对于每个样本,损失函数可以表示为:

L=21​(y−y^​)2

其中,y是网络的输出,y^​是样本的真实标签。通过最小化损失函数,可以优化网络参数。在训练过程中,通常采用反向传播算法计算梯度并更新网络参数。

3.JAFFE表情数据库

JAFFE表情数据库是一个用于表情识别的研究数据集,由日本女演员Jaffe于1998年捐赠给加州大学圣地亚哥分校。

该数据集包含了213张面部图片,每个人做出了7类表情,包括愤怒、厌恶、恐惧、快乐、哀伤、惊讶和中性。每组大约有20张样图,可以用来训练和测试面部表情识别的算法。

JAFFE数据集在计算机视觉领域的情感计算、表情识别和人机交互等方面有着重要的应用价值。它提供了一个标准化的面部表情数据集,可以用于研究表情识别算法的性能和可靠性,为实现面部表情识别的研究提供了基础。

使用JAFFE数据集需要一些前置条件,如熟悉基本的Python编程和图像处理技术,研究者需要利用相关的机器学习和计算机视觉算法来识别和分类面部表情。

总之,JAFFE数据集是一个标准和经典的表情识别数据集,对于研究表情识别算法的人来说是一个非常好的选择。

5.算法完整程序工程

OOOOO

OOO

O

相关推荐
DREAM依旧4 分钟前
隐马尔科夫模型|前向算法|Viterbi 算法
人工智能
GocNeverGiveUp17 分钟前
机器学习2-NumPy
人工智能·机器学习·numpy
B站计算机毕业设计超人1 小时前
计算机毕业设计PySpark+Hadoop中国城市交通分析与预测 Python交通预测 Python交通可视化 客流量预测 交通大数据 机器学习 深度学习
大数据·人工智能·爬虫·python·机器学习·课程设计·数据可视化
学术头条1 小时前
清华、智谱团队:探索 RLHF 的 scaling laws
人工智能·深度学习·算法·机器学习·语言模型·计算语言学
18号房客1 小时前
一个简单的机器学习实战例程,使用Scikit-Learn库来完成一个常见的分类任务——**鸢尾花数据集(Iris Dataset)**的分类
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理·sklearn
feifeikon1 小时前
机器学习DAY3 : 线性回归与最小二乘法与sklearn实现 (线性回归完)
人工智能·机器学习·线性回归
游客5201 小时前
opencv中的常用的100个API
图像处理·人工智能·python·opencv·计算机视觉
古希腊掌管学习的神1 小时前
[机器学习]sklearn入门指南(2)
人工智能·机器学习·sklearn
凡人的AI工具箱2 小时前
每天40分玩转Django:Django国际化
数据库·人工智能·后端·python·django·sqlite
IT猿手2 小时前
最新高性能多目标优化算法:多目标麋鹿优化算法(MOEHO)求解TP1-TP10及工程应用---盘式制动器设计,提供完整MATLAB代码
开发语言·深度学习·算法·机器学习·matlab·多目标算法