【STM32】片上ADC的初步使用

基于stm32f103系列

基于《零死角玩转 STM32F103---指南者》

ADC简介

stm32f103上的ADC

数量:3
精度:12bit(4096)
通道:ADC1,ADC2均有16个通道,ADC3有8个
功能:

转换结束、注入转换结束和发生模拟看门狗事件时产生中断。

单次和连续转换模式

从通道0到通道n的自动扫描模式

自校准

带内嵌数据一致性的数据对齐

采样间隔可以按通道分别编程

规则转换和注入转换均有外部触发选项

间断模式

双重模式(带2个或以上ADC的器件)

输入电压范围

输入通道

根据手册选择输入通道

转换顺序

规则序列

规则序列 从小到大依次转换

配置SQR3、SQR2、SQR1寄存器。按顺序从SQR3中的SQ1,SQ2到SQR1中的SQ16

注入序列

注入序列 依据通道数目,从大到小或者从小到大

注入序列寄存器 JSQR 只有一个,最多支持 4 个通道。具体多少个由 JSQR 的 JL[2:0]决定。如果 JL的 值小于 4 的话,则 JSQR 跟 SQR决定转换顺序的设置不一样,第一次转换的不是 JSQR1[4:0],而是 JCQRx[4:0] ,x = (4-JL),跟 SQR 刚好相反。如果 JL=00(1 个转换),那么转换的顺序是从 JSQR4[4:0]开始,而不是从 JSQR1[4:0]开始,这个要注意,编程的时候不要搞错。当 JL 等于 4 时,跟 SQR 一样。

触发源

1.CR寄存器中的CONbit位使能,开始转换

2.触发启动:

内部定时器触发和外部 IO 触发

触发源有很多,具体选择哪一种触发源,由 ADC 控制寄存器 2:ADC_CR2 的EXTSEL[2:0]和 JEXTSEL[2:0]位来控制。EXTSEL[2:0]用于选择规则通道的触发源,JEXTSEL[2:0]用于选择注入通道的触发源。选定好触发源之后,触发源是否要激活,则由ADC 控制寄存器 2:ADC_CR2 的 EXTTRIG 和 JEXTTRIG 这两位来激活。其中 ADC3 的规则转换和注入转换的触发源与 ADC1/2 的有所不同。

EXTSEL[2:0]和JEXTSEL2:0]控制位允许应用程序选择8个可能的事件中的某一个,可以触发规则和注入组的采样。

转换时间

ADC 时钟

ADC 输入时钟 ADC_CLK 由 PCLK2 经过分频产生,最大是 14M,分频因子由 RCC 时钟配置寄存器 RCC_CFGR 的位 15:14 ADCPRE[1:0]设置,可以是 2/4/6/8 分频,注意这里没有 1 分频。一般我们设置 PCLK2=HCLK=72M。

采样时间

ADC 使用若干个 ADC_CLK 周期对输入的电压进行采样,采样的周期数可通过 ADC 采样时间寄存器 ADC_SMPR1 和 ADC_SMPR2 中的 SMP[2:0]位设置,ADC_SMPR2 控制的是通道 0~9,ADC_SMPR1 控制的是通道 10~17。每个通道可以分别用不同的时间采样。其中采样周期最小是 1.5 个,即如果我们要达到最快的采样,那么应该设置采样周期为 1.5 个周期,这里说的周期就是 1/ADC_CLK。

ADC 的转换时间跟 ADC 的输入时钟和采样时间有关,公式为:Tconv = 采样时间 + 12.5 个周期。当 ADCLK = 14MHZ (最高),采样时间设置为 1.5 周期(最快),那么总的转换时间(最短)Tconv = 1.5 周期 + 12.5 周期 = 14 周期 = 1us。

一般我们设置 PCLK2=72M,经过 ADC 预分频器能分频到最大的时钟只能是 12M,采样周期设置为 1.5 个周期,算出最短的转换时间为 1.17us,这个才是最常用的。

数据寄存器 ADC->DR

ADC 转换后的数据根据转换组的不同,规则组的数据放在 ADC_DR寄存器,注入组的数据放在 JDRx。

规则数据寄存器 ADC_DR寄存器

ADC 规则组数据寄存器 ADC_DR 只有一个,是一个 32 位的寄存器,低 16 位在单 ADC时使用,高 16 位是在 ADC1 中双模式下保存 ADC2 转换的规则数据,双模式就是 ADC1 和ADC2 同时使用。

规则通道可以有 16 个这么多,可规则数据寄存器只有一个,如果使用多通道转换,那转换的数据就全部都挤在了 DR 里面,前一个时间点转换的通道数据,就会被下一个时间点的另外一个通道转换的数据覆盖掉,所以当通道转换完成后就应该把数据取走,或者开启 DMA 模式,把数据传输到内存里面,不然就会造成数据的覆盖。最常用的做法就是开启 DMA 传输。

注入数据寄存器 JDRx寄存器

ADC 注入组最多有 4 个通道,刚好注入数据寄存器也有 4 个,每个通道对应着自己的寄存器,不会跟规则寄存器那样产生数据覆盖的问题。ADC_JDRx 是 32 位的,低 16 位有效,高 16 位保留,数据同样分为左对齐和右对齐,具体是以哪一种方式存放,由ADC_CR2 的 11 位 ALIGN 设置。

中断

转换结束中断

数据转换结束后,可以产生中断,中断分为三种:规则通道转换结束中断,注入转换通道转换结束中断,模拟看门狗中断。

模拟看门狗中断

当被 ADC 转换的模拟电压低于低阈值或者高于高阈值时,就会产生中断,前提是我们开启了模拟看门狗中断,其中低阈值和高阈值由 ADC_LTR 和 ADC_HTR 设置。例如我们设置高阈值是 2.5V,那么模拟电压超过 2.5V的时候,就会产生模拟看门狗中断,反之低阈值也一样。

DMA请求

规则和注入通道转换结束后,除了产生中断外,还可以产生 DMA 请求,把转换好的数据直接存储在内存里面。要注意的是只有 ADC1 和 ADC3 可以产生 DMA 请求。

编程要点

独立单通道

ADC GPIO 初始化

c 复制代码
 static void ADCx_GPIO_Config(void)
 {
	GPIO_InitTypeDef GPIO_InitStructure;
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC2,ENABLE)
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;//模拟输入
	GPIO_Init(GPIOC, &GPIO_InitStructure);
 }

ADC 工作模式配置

c 复制代码
// ADC 编号选择
// 可以是 ADC1/2,如果使用 ADC3,中断相关的要改成 ADC3 的
#define ADC_APBxClock_FUN RCC_APB2PeriphClockCmd
#define ADCx ADC2
#define ADC_CLK RCC_APB2Periph_ADC2

// ADC GPIO 宏定义
// 注意:用作 ADC 采集的 IO 必须没有复用,否则采集电压会有影响
#define ADC_GPIO_APBxClock_FUN RCC_APB2PeriphClockCmd
#define ADC_GPIO_CLK RCC_APB2Periph_GPIOC
#define ADC_PORT GPIOC
#define ADC_PIN GPIO_Pin_1
// ADC 通道宏定义
#define ADC_CHANNEL ADC_Channel_11
 
// ADC 中断相关宏定义
#define ADC_IRQ ADC1_2_IRQn
#define ADC_IRQHandler ADC1_2_IRQHandler


static void ADCx_Mode_Config(void)
{
	ADC_InitTypeDef ADC_InitStructure;

	// 打开 ADC 时钟
	ADC_APBxClock_FUN ( ADC_CLK, ENABLE );

	// ADC 模式配置
	// 只使用一个 ADC,属于独立模式
	 ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;
 
	 // 禁止扫描模式,多通道才要,单通道不需要
	 ADC_InitStructure.ADC_ScanConvMode = DISABLE ;
 
	 // 连续转换模式
	 ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;
 
	 // 不用外部触发转换,软件开启即可
	 ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;
 
	 // 转换结果右对齐
	 ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
 
	 // 转换通道 1 个
	 ADC_InitStructure.ADC_NbrOfChannel = 1;
 
	 // 初始化 ADC
	 ADC_Init(ADCx, &ADC_InitStructure);
 
	 // 配置 ADC 时钟N狿 CLK2 的 8 分频,即 9MHz
	 RCC_ADCCLKConfig(RCC_PCLK2_Div8);
 
	 // 配置 ADC 通道转换顺序为 1,第一个转换,采样时间为 55.5 个时钟周期
	 ADC_RegularChannelConfig(ADCx, ADC_CHANNEL, 1,
	 ADC_SampleTime_55Cycles5);
 
	 // ADC 转换结束产生中断,在中断服务程序中读取转换值
	 ADC_ITConfig(ADCx, ADC_IT_EOC, ENABLE);
 
	 // 开启 ADC ,并开始转换
	 ADC_Cmd(ADCx, ENABLE);
 
	 // 初始化 ADC 校准寄存器
	 ADC_ResetCalibration(ADCx);
	 // 等待校准寄存器初始化完成
	 while (ADC_GetResetCalibrationStatus(ADCx));

	 // ADC 开始校准
	 ADC_StartCalibration(ADCx);
	 // 等待校准完成
	 while (ADC_GetCalibrationStatus(ADCx));

	 // 由于没有采用外部触发,所以使用软件触发 ADC 转换
	 ADC_SoftwareStartConvCmd(ADCx, ENABLE);
 }

ADC 中断配置

NVIC配置

c 复制代码
static void ADC_NVIC_Config(void)
{
	NVIC_InitTypeDef NVIC_InitStructure;

	NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1);

	NVIC_InitStructure.NVIC_IRQChannel = ADC_IRQ;
	NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
	NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
	NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
 
	NVIC_Init(&NVIC_InitStructure);
}

开启ADC中断

c 复制代码
// ADC 转换结束产生中断,在中断服务程序中读取转换值
 ADC_ITConfig(ADCx, ADC_IT_EOC, ENABLE);

ADC中断服务函数


1.ADC1和ADC2共有一个中断服务函数

2.中断服务函数中读取ADC状态寄存器SR的相应位置

c 复制代码
void ADC_IRQHandler(void)
{
	if (ADC_GetITStatus(ADCx,ADC_IT_EOC)==SET) {
	// 读取 ADC 的转换值
	ADC_ConvertedValue = ADC_GetConversionValue(ADCx);

	}
	ADC_ClearITPendingBit(ADCx,ADC_IT_EOC);
}

独立模式多通道采集

  1. 初始化 ADC GPIO;
  2. 初始化 ADC 工作参数;
  3. 配置 DMA 工作参数;
  4. 读取 ADC 采集的数据;

GPIO配置

c 复制代码
static void ADCx_GPIO_Config(void)
{
	GPIO_InitTypeDef GPIO_InitStructure;

	// 打开 ADC IO 端口时钟
	ADC_GPIO_APBxClock_FUN ( ADC_GPIO_CLK, ENABLE );

	// 配置 ADC IO 引脚模式
	GPIO_InitStructure.GPIO_Pin = ADC_PIN1
	 |ADC_PIN2
	 |ADC_PIN3
	 |ADC_PIN4
	 |ADC_PIN5;
	 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;
	 // 初始化 ADC IO
	 GPIO_Init(ADC_PORT, &GPIO_InitStructure);
 }

ADC以及DMA模式配置

c 复制代码
static void ADCx_Mode_Config(void)
{
	DMA_InitTypeDef DMA_InitStructure;
	ADC_InitTypeDef ADC_InitStructure;

	// 打开 DMA 时钟
	RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);
	// 打开 ADC 时钟
	ADC_APBxClock_FUN ( ADC_CLK, ENABLE );
 
	 /* ------------------DMA 模式配置---------------- */
	 // 复位 DMA 控制器
	 DMA_DeInit(ADC_DMA_CHANNEL);
	 // 配置 DMA 初始化结构体
	 // 外设基址为:ADC 数据寄存器地址
	 DMA_InitStructure.DMA_PeripheralBaseAddr = (u32)(&( ADCx->DR ));
	 // 存储器地址
	 DMA_InitStructure.DMA_MemoryBaseAddr = (u32)ADC_ConvertedValue;
	 // 数据源来自外设
	 DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;
	 // 缓冲区大小,应该等于数据目的地的大小
	 DMA_InitStructure.DMA_BufferSize = NOFCHANEL;
	 // 外设寄存器只有一个,地址不用递增
	 DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
	 // 存储器地址递增
	 DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
	 // 外设数据大小为半字,即两个字节
	 DMA_InitStructure.DMA_PeripheralDataSize =
	 DMA_PeripheralDataSize_HalfWord;
	 // 内存数据大小也为半字,跟外设数据大小相同
	 DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
	 // 循环传输模式
	 DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
	 // DMA 传输通道优先级为高,当使用一个 DMA 通道时,优先级设置不影响
	 DMA_InitStructure.DMA_Priority = DMA_Priority_High;
	 // 禁止存储器到存储器模式,因为是从外设到存储器
	 DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
	 // 初始化 DMA
	 DMA_Init(ADC_DMA_CHANNEL, &DMA_InitStructure);
	 // 使能 DMA 通道
	 DMA_Cmd(ADC_DMA_CHANNEL , ENABLE);
 
	 /* ----------------ADC 模式配置--------------------- */
	 // 只使用一个 ADC,属于单模式
	 ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;
	 // 扫描模式
	 ADC_InitStructure.ADC_ScanConvMode = ENABLE ;
	 // 连续转换模式
	 ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;
	 // 不用外部触发转换,软件开启即可
	 ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;
	 // 转换结果右对齐
	 ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
	 // 转换通道个数
	 ADC_InitStructure.ADC_NbrOfChannel = NOFCHANEL;
	 // 初始化 ADC
	 ADC_Init(ADCx, &ADC_InitStructure);
	 // 配置 ADC 时钟N狿 CLK2 的 8 分频,即 9MHz
	 RCC_ADCCLKConfig(RCC_PCLK2_Div8);
	 // 配置 ADC 通道的转换顺序和采样时间
	 ADC_RegularChannelConfig(ADCx, ADC_CHANNEL1, 1,
	 ADC_SampleTime_55Cycles5);
	 ADC_RegularChannelConfig(ADCx, ADC_CHANNEL2, 2,
	 ADC_SampleTime_55Cycles5);
	 ADC_RegularChannelConfig(ADCx, ADC_CHANNEL3, 3,
	 ADC_SampleTime_55Cycles5);
	 ADC_RegularChannelConfig(ADCx, ADC_CHANNEL4, 4,
	 ADC_SampleTime_55Cycles5);
	 ADC_RegularChannelConfig(ADCx, ADC_CHANNEL5, 5,
	 ADC_SampleTime_55Cycles5);
	 // 使能 ADC DMA 请求
	 ADC_DMACmd(ADCx, ENABLE);
	 // 开启 ADC ,并开始转换
	 ADC_Cmd(ADCx, ENABLE);
	 // 初始化 ADC 校准寄存器
	 ADC_ResetCalibration(ADCx);
	 // 等待校准寄存器初始化完成
	 while (ADC_GetResetCalibrationStatus(ADCx));
	 // ADC 开始校准
	 ADC_StartCalibration(ADCx);
	 // 等待校准完成
	 while (ADC_GetCalibrationStatus(ADCx));
	 // 由于没有采用外部触发,所以使用软件触发 ADC 转换
	 ADC_SoftwareStartConvCmd(ADCx, ENABLE);
 }

双重 ADC 同步规则模式采集

参看《零死角玩转STM32---F103指南者》

相关推荐
美式小田3 小时前
单片机学习笔记 9. 8×8LED点阵屏
笔记·单片机·嵌入式硬件·学习
兰_博3 小时前
51单片机-独立按键与数码管联动
单片机·嵌入式硬件·51单片机
时光の尘3 小时前
C语言菜鸟入门·关键字·float以及double的用法
运维·服务器·c语言·开发语言·stm32·单片机·c
嵌入式大圣5 小时前
单片机结合OpenCV
单片机·嵌入式硬件·opencv
日晨难再6 小时前
嵌入式:STM32的启动(Startup)文件解析
stm32·单片机·嵌入式硬件
yufengxinpian7 小时前
集成了高性能ARM Cortex-M0+处理器的一款SimpleLink 2.4 GHz无线模块-RF-BM-2340B1
单片机·嵌入式硬件·音视频·智能硬件
__基本操作__8 小时前
历遍单片机下的IIC设备[ESP--0]
单片机·嵌入式硬件
网易独家音乐人Mike Zhou14 小时前
【卡尔曼滤波】数据预测Prediction观测器的理论推导及应用 C语言、Python实现(Kalman Filter)
c语言·python·单片机·物联网·算法·嵌入式·iot
zy张起灵14 小时前
48v72v-100v转12v 10A大功率转换电源方案CSM3100SK
经验分享·嵌入式硬件·硬件工程
PegasusYu17 小时前
STM32CUBEIDE FreeRTOS操作教程(九):eventgroup事件标志组
stm32·教程·rtos·stm32cubeide·free-rtos·eventgroup·时间标志组