一种基于注意机制的快速、鲁棒的混合气体识别和浓度检测算法,配备了具有双损失函数的递归神经网络

A fast and robust mixture gases identification and concentration detection algorithm based on attention mechanism equipped recurrent neural network with double loss function

摘要

提出一个由注意力机制组成的电子鼻系统。首先采用端到端的编码器译码器,提供处理可变长度输入的灵活性。然后提供一种新的门控循环单元网络,方便从时间动态中提取特征,在此基础上注意力机制动态分配气体特征的权重向量。最后采用双损失函数,利用同一网络实现对混合气体识别和浓度计算

介绍

PCA ICA FDA CNN进行分类

加权核+PCA/ICA/FDA等实现对非线性问题的识别

采用普通的CNN无法利用之前的信息

新提出的模型 更适合混合气体 采用端到端技术 自动提取特征+长时间信息保留 多标签技术实现气体排列组合 双损失函数实现类别和浓度判别

网络结构如下所示

GRU包含重置门和更新门,重置门确定之前信息需要保留的信息,更新门利用当前信息和之前信息进行向下一个GRU输出,之后引入注意力机制,利用权重向量得到最终的气体特征,最后采用多标签技术,双损失函数的到最终结果

训练,预测过程

双损失函数

相关推荐
zandy10111 小时前
当BI遇见AI Agent:衡石科技如何重塑企业数据分析工作流
人工智能·科技·数据分析·ai agent·data agent
草莓熊Lotso1 小时前
C++11 核心特性实战:列表初始化 + 右值引用与移动语义(附完整代码)
java·服务器·开发语言·汇编·c++·人工智能·经验分享
渡我白衣2 小时前
AI应用层革命(七)——智能体的终极形态:认知循环体的诞生
人工智能·深度学习·神经网络·目标检测·microsoft·机器学习·自然语言处理
前端小白在前进2 小时前
⭐力扣刷题:螺旋矩阵
算法·leetcode·矩阵
草莓熊Lotso2 小时前
GCC/G++ 编译器完全指南:从编译流程到进阶用法(附实操案例)
linux·运维·服务器·网络·c++·人工智能·自动化
Wnq100727 小时前
世界模型 AI:认知跃迁的可行性与本质性挑战
人工智能
穷人小水滴7 小时前
科幻 「备用肉身虫」 系列设定集 (AI 摘要)
人工智能·aigc·科幻·未来·小说·设定
老赵聊算法、大模型备案7 小时前
北京市生成式人工智能服务已备案信息公告(2025年12月11日)
人工智能·算法·安全·aigc
咬人喵喵7 小时前
上下文窗口:AI 的“大脑容量”
人工智能
workflower7 小时前
时序数据获取事件
开发语言·人工智能·python·深度学习·机器学习·结对编程