一种基于注意机制的快速、鲁棒的混合气体识别和浓度检测算法,配备了具有双损失函数的递归神经网络

A fast and robust mixture gases identification and concentration detection algorithm based on attention mechanism equipped recurrent neural network with double loss function

摘要

提出一个由注意力机制组成的电子鼻系统。首先采用端到端的编码器译码器,提供处理可变长度输入的灵活性。然后提供一种新的门控循环单元网络,方便从时间动态中提取特征,在此基础上注意力机制动态分配气体特征的权重向量。最后采用双损失函数,利用同一网络实现对混合气体识别和浓度计算

介绍

PCA ICA FDA CNN进行分类

加权核+PCA/ICA/FDA等实现对非线性问题的识别

采用普通的CNN无法利用之前的信息

新提出的模型 更适合混合气体 采用端到端技术 自动提取特征+长时间信息保留 多标签技术实现气体排列组合 双损失函数实现类别和浓度判别

网络结构如下所示

GRU包含重置门和更新门,重置门确定之前信息需要保留的信息,更新门利用当前信息和之前信息进行向下一个GRU输出,之后引入注意力机制,利用权重向量得到最终的气体特征,最后采用多标签技术,双损失函数的到最终结果

训练,预测过程

双损失函数

相关推荐
禁默2 分钟前
Ops-Transformer深入:CANN生态Transformer专用算子库赋能多模态生成效率跃迁
人工智能·深度学习·transformer·cann
杜子不疼.4 分钟前
基于CANN GE图引擎的深度学习模型编译与优化技术
人工智能·深度学习
L、2188 分钟前
深入理解CANN:面向AI加速的异构计算架构详解
人工智能·架构
iAkuya12 分钟前
(leetcode)力扣100 62N皇后问题 (普通回溯(使用set存储),位运算回溯)
算法·leetcode·职场和发展
近津薪荼12 分钟前
dfs专题5——(二叉搜索树中第 K 小的元素)
c++·学习·算法·深度优先
chaser&upper14 分钟前
预见未来:在 AtomGit 解码 CANN ops-nn 的投机采样加速
人工智能·深度学习·神经网络
xiaoye-duck14 分钟前
吃透 C++ STL list:从基础使用到特性对比,解锁链表容器高效用法
c++·算法·stl
松☆18 分钟前
CANN与大模型推理:在边缘端高效运行7B参数语言模型的实践指南
人工智能·算法·语言模型
结局无敌24 分钟前
深度探究cann仓库下的infra:AI计算的底层基础设施底座
人工智能
m0_4665252924 分钟前
绿盟科技风云卫AI安全能力平台成果重磅发布
大数据·数据库·人工智能·安全