LeetCode——动态规划篇(一)

刷题顺序及思路来源于代码随想录,网站地址https://programmercarl.com

目录

[509. 斐波那契数 - 力扣(LeetCode)](#509. 斐波那契数 - 力扣(LeetCode))

[70. 爬楼梯 - 力扣(LeetCode)](#70. 爬楼梯 - 力扣(LeetCode))

[746. 使用最小花费爬楼梯 - 力扣(LeetCode)](#746. 使用最小花费爬楼梯 - 力扣(LeetCode))

[62. 不同路径 - 力扣(LeetCode)](#62. 不同路径 - 力扣(LeetCode))

[63. 不同路径 II - 力扣(LeetCode)](#63. 不同路径 II - 力扣(LeetCode))


509. 斐波那契数 - 力扣(LeetCode)

斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 01 开始,后面的每一项数字都是前面两项数字的和。也就是:

复制代码
F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1

给定 n ,请计算 F(n)

复制代码
输入:n = 2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1
java 复制代码
package com.light.code.leetcode.dp;

import java.util.Scanner;

/**
 * @author light
 * @Description 斐波那契数列
 * F(0) = 0,F(1) = 1
 * F(n) = F(n - 1) + F(n - 2),其中 n > 1,给定 n ,请计算 F(n) 。
 * @create 2023-09-13 9:28
 */
public class FibTest {
	public static void main(String[] args) {
		Scanner input=new Scanner(System.in);
		int n=input.nextInt();
		System.out.println(fib(n));
	}
	public int fib(int n) {  //动态规划解法
        if(n<=1){
            return n;
        }
        int dp[]=new int[n+1];  //1、确定dp数组含义:第i个数的斐波那契数值为df[i]
        dp[0]=0;  //3、初始化递推公式
        dp[1]=1;
        for(int i=2;i<=n;i++){  //4、遍历顺序
            dp[i]=dp[i-1]+dp[i-2]; //2、确定递推公式
        }
        return dp[n];
        //5、如果有问题打印dp数组
    }
}

70. 爬楼梯 - 力扣(LeetCode)

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 12 个台阶。你有多少种不同的方法可以爬到楼顶呢?

java 复制代码
输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶
java 复制代码
import java.util.Scanner;

/**
 * @author light
 * @Description 爬楼梯
 *
 * @create 2023-09-13 9:36
 */
public class ClimbStairsTest {
	public static void main(String[] args) {
		Scanner input=new Scanner(System.in);
		int n=input.nextInt();
		System.out.println(climbStairs(n));
	}
	 public int climbStairs(int n) {
        if(n<=2){
            return n;
        }
        //确定dp数组及下标含义 dp[i]:爬到第i阶楼梯有dp[i]种方法
        int[] dp=new int[n+1];
        //确定递推公式--->dp[i]=dp[i-2]+dp[i-1]
        //初始化dp数组 
        dp[1]=1;
        dp[2]=2;
        for(int i=3;i<=n;i++){
            dp[i]=dp[i-1]+dp[i-2];
        }

        return dp[n];

    }
}

746. 使用最小花费爬楼梯 - 力扣(LeetCode)

给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。

你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。

请你计算并返回达到楼梯顶部的最低花费。

java 复制代码
输入:cost = [10,15,20]
输出:15
解释:你将从下标为 1 的台阶开始。
- 支付 15 ,向上爬两个台阶,到达楼梯顶部。
总花费为 15 。
java 复制代码
import java.util.Scanner;

/**
 * @author light
 * @Description 最小花费爬楼梯
 *
 * @create 2023-09-13 10:02
 */
public class MinCostClimbingStairsTest {
	public static void main(String[] args) {
		Scanner input=new Scanner(System.in);
		int n=input.nextInt();
		int[] num=new int[n];
		for (int i = 0; i < n; i++) {
			num[i]=input.nextInt();
		}
		System.out.println(minCostClimbingStairs(num));
	}
	 public int minCostClimbingStairs(int[] cost) {
         //1 定义dp数组并确认其含义dp[i] 爬到第i阶台阶的最低花费
        int[] dp=new int[cost.length+1];
        //3 初始化dp数组
        dp[0]=0;
        dp[1]=0;
        //4 确认遍历顺序
        for(int i=2;i<=cost.length;i++){
             //2 确认转移矩阵 
            dp[i]=Math.min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);
        }
        return dp[cost.length];
    }
}

62. 不同路径 - 力扣(LeetCode)

一个机器人位于一个 m x n网格的左上角 (起始点在下图中标记为 "Start" )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 "Finish" )。

问总共有多少条不同的路径?

java 复制代码
import java.util.Scanner;

/**
 * @author light
 * @Description 不同路径
 * 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 "Start" )。
 *
 * 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 "Finish" )。
 *
 * 问总共有多少条不同的路径?
 *
 * @create 2023-09-13 10:33
 */
public class UniquePathsTest {
	public static void main(String[] args) {
		Scanner input=new Scanner(System.in);
		int m=input.nextInt();
		int n=input.nextInt();
		System.out.println(uniquePaths(m, n));

	}
	  public int uniquePaths(int m, int n) {
        //确定dp数组及其含义 do[i][j]:到位置为(i,j)的格子有几条路径
        int[][] dp=new int[m][n];
        //初始化dp数组
        for(int i=0;i<m;i++){
            dp[i][0]=1;//列
        }
        for(int j=0;j<n;j++){
            dp[0][j]=1; //行
        }
        //确认遍历顺序
        for(int i=1;i<m;i++){
            for(int j=1;j<n;j++){
                //确定转移矩阵
                dp[i][j]=dp[i-1][j]+dp[i][j-1];
            }
        }

        return dp[m-1][n-1];

    }
}

63. 不同路径 II - 力扣(LeetCode)

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 "Start" )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 "Finish")。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 10 来表示。

java 复制代码
class Solution {
    public int uniquePathsWithObstacles(int[][] obstacleGrid) {
        int m=obstacleGrid.length;
        int n=obstacleGrid[0].length;
        //确定dp数组及其含义 
        // dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。
        int[][] dp=new int[m][n];
        //如果在起点或终点出现了障碍,直接返回0
        if(obstacleGrid[0][0]==1||obstacleGrid[m-1][n-1]==1){
            return 0;
        }
        //初始化dp数组
        for(int i=0;i<n&&obstacleGrid[0][i]==0;i++){
            dp[0][i]=1;
        }
        for(int i=0;i<m&&obstacleGrid[i][0]==0;i++){
            dp[i][0]=1;
        }

        //遍历顺序
        for(int i=1;i<m;i++){
            for(int j=1;j<n;j++){
                //确定状态转移方程
                if(obstacleGrid[i][j]==0){
                    dp[i][j]=dp[i-1][j]+dp[i][j-1];
                }
            }
        }
        return dp[m-1][n-1];
    }
}
相关推荐
一条星星鱼6 小时前
深度学习中的归一化:从BN到LN到底是怎么工作的?
人工智能·深度学习·算法·归一化
zsc_1186 小时前
基于贪心最小化包围盒策略的布阵算法
算法
哈泽尔都7 小时前
运动控制教学——5分钟学会PRM算法!
人工智能·单片机·算法·数学建模·贪心算法·机器人·无人机
聪明的笨猪猪7 小时前
Java Redis “Sentinel(哨兵)与集群”面试清单(含超通俗生活案例与深度理解)
java·经验分享·笔记·面试
222you7 小时前
Mybatis(1)
java·tomcat·mybatis
靠近彗星7 小时前
1.5操作系统引导
java·linux·服务器·操作系统
瑶山8 小时前
社区版Idea怎么创建Spring Boot项目?Selected Java version 17 is not supported. 问题解决
java·spring boot·intellij-idea·创建项目
2301_789015628 小时前
算法与数据结构——排序算法大全
c语言·开发语言·数据结构·c++·算法·排序算法·visual studio
学习编程的Kitty8 小时前
JavaEE初阶——多线程(1)初识线程与创建线程
java·开发语言·java-ee
长安城没有风8 小时前
从入门到精通【Redis】初识Redis哨兵机制(Sentinel)
java·数据库·redis·后端