背景:
flink中常见的需求如下:统计某个页面一天内的点击率,每10秒输出一次,我们如果采用ProcessWindowFunction 结合自定义触发器如何实现呢?如果这样实现问题是什么呢?
ProcessWindowFunction 结合自定义触发器实现统计点击率
关键代码:
完整代码参见:
java
package wikiedits.func;
import java.text.SimpleDateFormat;
import java.util.Date;
import org.apache.flink.api.common.state.ValueState;
import org.apache.flink.api.common.state.ValueStateDescriptor;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.runtime.state.filesystem.FsStateBackend;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.SourceFunction;
import org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.triggers.ContinuousEventTimeTrigger;
import org.apache.flink.streaming.api.windowing.triggers.ContinuousProcessingTimeTrigger;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;
import wikiedits.func.model.KeyCount;
public class ProcessWindowFunctionAndTiggerDemo {
public static void main(String[] args) throws Exception {
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// 使用处理时间
env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime);
env.enableCheckpointing(60000, CheckpointingMode.EXACTLY_ONCE);
env.setStateBackend(new FsStateBackend("file:///D:/tmp/flink/checkpoint/windowtrigger"));
// 并行度为1
env.setParallelism(1);
// 设置数据源,一共三个元素
DataStream<Tuple2<String, Integer>> dataStream = env.addSource(new SourceFunction<Tuple2<String, Integer>>() {
@Override
public void run(SourceContext<Tuple2<String, Integer>> ctx) throws Exception {
int xxxNum = 0;
int yyyNum = 0;
for (int i = 1; i < Integer.MAX_VALUE; i++) {
// 只有XXX和YYY两种name
String name = (0 == i % 2) ? "XXX" : "YYY";
// 更新aaa和bbb元素的总数
if (0 == i % 2) {
xxxNum++;
} else {
yyyNum++;
}
// 使用当前时间作为时间戳
long timeStamp = System.currentTimeMillis();
// 将数据和时间戳打印出来,用来验证数据
if(xxxNum % 2000==0){
System.out.println(String.format("source,%s, %s, XXX total : %d, YYY total : %d\n", name,
time(timeStamp), xxxNum, yyyNum));
}
// 发射一个元素,并且戴上了时间戳
ctx.collectWithTimestamp(new Tuple2<String, Integer>(name, 1), timeStamp);
// 每发射一次就延时1秒
Thread.sleep(1);
}
}
@Override
public void cancel() {}
});
// 将数据用5秒的滚动窗口做划分,再用ProcessWindowFunction
SingleOutputStreamOperator<String> mainDataStream = dataStream
// 以Tuple2的f0字段作为key,本例中实际上key只有aaa和bbb两种
.keyBy(value -> value.f0)
// 5秒一次的滚动窗口
.timeWindow(Time.minutes(5))
// 10s触发一次计算,更新统计结果
.trigger(ContinuousProcessingTimeTrigger.of(Time.seconds(10)))
// 统计每个key当前窗口内的元素数量,然后把key、数量、窗口起止时间整理成字符串发送给下游算子
.process(new ProcessWindowFunction<Tuple2<String, Integer>, String, String, TimeWindow>() {
// 自定义状态
private ValueState<KeyCount> state;
@Override
public void open(Configuration parameters) throws Exception {
// 初始化状态,name是myState
state = getRuntimeContext().getState(new ValueStateDescriptor<>("myState", KeyCount.class));
}
public void clear(Context context) {
ValueState<KeyCount> contextWindowValueState = context.windowState().getState(new ValueStateDescriptor<>("myWindowState", KeyCount.class));
contextWindowValueState.clear();
}
@Override
public void process(String s, Context context, Iterable<Tuple2<String, Integer>> iterable,
Collector<String> collector) throws Exception {
// 从backend取得当前单词的myState状态
KeyCount current = state.value();
// 如果myState还从未没有赋值过,就在此初始化
if (current == null) {
current = new KeyCount();
current.key = s;
current.count = 0;
}
int count = 0;
// iterable可以访问该key当前窗口内的所有数据,
// 这里简单处理,只统计了元素数量
for (Tuple2<String, Integer> tuple2 : iterable) {
count++;
}
// 更新当前key的元素总数
current.count += count;
// 更新状态到backend
state.update(current);
ValueState<KeyCount> contextWindowValueState = context.windowState().getState(new ValueStateDescriptor<>("myWindowState", KeyCount.class));
KeyCount windowValue = contextWindowValueState.value();
if (windowValue == null) {
windowValue = new KeyCount();
windowValue.key = s;
windowValue.count = 0;
}
windowValue.count += count;
contextWindowValueState.update(windowValue);
// 将当前key及其窗口的元素数量,还有窗口的起止时间整理成字符串
String value = String.format("window, %s, %s - %s, %d, windowStateCount :%d, total : %d",
// 当前key
s,
// 当前窗口的起始时间
time(context.window().getStart()),
// 当前窗口的结束时间
time(context.window().getEnd()),
// 当前key在当前窗口内元素总数
count,
// 当前key所在窗口的总数
contextWindowValueState.value().count,
// 当前key出现的总数
current.count);
// 发射到下游算子
collector.collect(value);
}
});
// 打印结果,通过分析打印信息,检查ProcessWindowFunction中可以处理所有key的整个窗口的数据
mainDataStream.print();
env.execute("processfunction demo : processwindowfunction");
}
public static String time(long timeStamp) {
return new SimpleDateFormat("yyyy-MM-dd hh:mm:ss").format(new Date(timeStamp));
}
}
这里采用ProcessWindowFunction 结合ContinuousProcessingTimeTrigger的方式确实可以实现统计至今为止某个页面点击率的目的,不过这其中需要注意点的点是:
每隔10s触发public void process(String s, Context context, Iterable<Tuple2<String, Integer>> iterable, Collector<String> collector)
方法时,iterable对象是包含了一天的窗口内收到的所有消息,也就是当前触发时iterable集合是前10s触发时iterable集合的超集,包含前10s触发时的所有的消息集合。
到这里所引起的问题也自然而然的出来了:对于ProcessWindowFunction 实现而言,flink内部是通过ListState的形式保存窗口内收到的所有消息的,注意这里flink内部会使用ListState保存每一条分配到以天为单位的窗口内的消息,这会导致状态膨胀,想一下,一天内所有的消息都会当成状态保存起来,这对于状态后端的压力是有多大!这些保存在ListState中的消息只有在窗口结束后才会清理:具体参见WindowOperator.clearAllState,那有解决方案吗?使用Agg/Reduce处理函数替ProcessWindowFunction作为处理函数可以实现吗?请看下一篇文章
参考文章: