一百七十三、Flume——Flume写入HDFS后的诸多小文件问题

一、目的

在用Flume采集Kafka中的数据写入HDFS后,发现写入HDFS的不是每天一个文件,而是一个文件夹,里面有很多小文件,浪费namenode的宝贵资源

二、Flume的配置文件优化(参考了其他博文)

(一)方法一、大多数人推荐经过测试有效的方法

在Flume任务的配置文件设置

a1.sinks.k1.hdfs.rollSize = 0

a1.sinks.k1.hdfs.rollCount = 0

而不是

a1.sinks.k1.hdfs.round=true

a1.sinks.k1.hdfs.roundValue=10

a1.sinks.k1.hdfs.roundUnit=minute

将rollSize和rollCount设置为0,表示不根据临时文件大小和event数量来滚动文件(滚动文件即指将HDFS上生成的以.tmp结尾的临时文件转换为实际存储文件

还有说可以调大rollSize的参数,比如调至102400,表示100KB。滚动文件的单位是byte。

(二)方法二、有人推荐经过测试后似乎有效的方法

还是在Flume任务的配置文件设置

a1.sinks.k1.hdfs.minBlockReplicas=1

我测试过,本来每5分钟就会有104.54 KB和1.63 KB的两个文件,因为有两个数据源。

在配置文件里加入这个a1.sinks.k1.hdfs.minBlockReplicas=1后,那个小文件1.63 KB就消失了。

所以这个方法还是有效的,但是对我来说就有点问题,就把它给去掉了,还是用方法一

Flume虽然安装简单,但是使用起来却非常不简单,使用过程中需要优化的配置服务很多,需要进一步研究总结!

相关推荐
Hello.Reader2 小时前
Flink Checkpoint 通用调优方案三种画像 + 配置模板 + 容量估算 + 巡检脚本 + 告警阈值
大数据·flink
Hy行者勇哥5 小时前
公司全场景运营中 PPT 的类型、功能与作用详解
大数据·人工智能
liliangcsdn5 小时前
如何基于ElasticsearchRetriever构建RAG系统
大数据·elasticsearch·langchain
乐迪信息5 小时前
乐迪信息:基于AI算法的煤矿作业人员安全规范智能监测与预警系统
大数据·人工智能·算法·安全·视觉检测·推荐算法
极验5 小时前
iPhone17实体卡槽消失?eSIM 普及下的安全挑战与应对
大数据·运维·安全
B站_计算机毕业设计之家6 小时前
推荐系统实战:python新能源汽车智能推荐(两种协同过滤+Django 全栈项目 源码)计算机专业✅
大数据·python·django·汽车·推荐系统·新能源·新能源汽车
The Sheep 20236 小时前
WPF自定义路由事件
大数据·hadoop·wpf
SelectDB技术团队7 小时前
Apache Doris 内部数据裁剪与过滤机制的实现原理 | Deep Dive
大数据·数据库·apache·数据库系统·数据裁剪
WLJT1231231238 小时前
科技赋能塞上农业:宁夏从黄土地到绿硅谷的蝶变
大数据·人工智能·科技