一百七十三、Flume——Flume写入HDFS后的诸多小文件问题

一、目的

在用Flume采集Kafka中的数据写入HDFS后,发现写入HDFS的不是每天一个文件,而是一个文件夹,里面有很多小文件,浪费namenode的宝贵资源

二、Flume的配置文件优化(参考了其他博文)

(一)方法一、大多数人推荐经过测试有效的方法

在Flume任务的配置文件设置

a1.sinks.k1.hdfs.rollSize = 0

a1.sinks.k1.hdfs.rollCount = 0

而不是

a1.sinks.k1.hdfs.round=true

a1.sinks.k1.hdfs.roundValue=10

a1.sinks.k1.hdfs.roundUnit=minute

将rollSize和rollCount设置为0,表示不根据临时文件大小和event数量来滚动文件(滚动文件即指将HDFS上生成的以.tmp结尾的临时文件转换为实际存储文件

还有说可以调大rollSize的参数,比如调至102400,表示100KB。滚动文件的单位是byte。

(二)方法二、有人推荐经过测试后似乎有效的方法

还是在Flume任务的配置文件设置

a1.sinks.k1.hdfs.minBlockReplicas=1

我测试过,本来每5分钟就会有104.54 KB和1.63 KB的两个文件,因为有两个数据源。

在配置文件里加入这个a1.sinks.k1.hdfs.minBlockReplicas=1后,那个小文件1.63 KB就消失了。

所以这个方法还是有效的,但是对我来说就有点问题,就把它给去掉了,还是用方法一

Flume虽然安装简单,但是使用起来却非常不简单,使用过程中需要优化的配置服务很多,需要进一步研究总结!

相关推荐
十六年开源服务商26 分钟前
WordPress站内SEO优化最佳实践指南
大数据·开源
搞科研的小刘选手28 分钟前
【北京师范大学主办】第三届信息化教育与计算机技术国际学术会议(IECA 2026)
大数据·计算机技术·学术会议·教育学·stem
expect7g1 小时前
Paimon源码解读 -- Compaction-4.KeyValueFileStoreWrite
大数据·flink
老蒋新思维2 小时前
创客匠人 2025 万人峰会核心:AI 驱动知识产品变现革新
大数据·人工智能·网络协议·tcp/ip·创始人ip·创客匠人·知识变现
expect7g2 小时前
Paimon源码解读 -- FULL_COMPACTION_DELTA_COMMITS
大数据·后端·flink
老蒋新思维3 小时前
创客匠人峰会新视角:AI 时代知识变现的 “组织化转型”—— 从个人 IP 到 “AI+IP” 组织的增长革命
大数据·人工智能·网络协议·tcp/ip·创始人ip·创客匠人·知识变现
TMO Group 探谋网络科技4 小时前
AI Agent工作原理:如何连接数据、决策与行动,助力企业数字化转型?
大数据·人工智能·ai
Chasing Aurora4 小时前
Git 工程指引(命令+问题)
大数据·git·elasticsearch·团队开发·互联网大厂
TG:@yunlaoda360 云老大5 小时前
阿里云国际站代理商RPA跨境服务的适用场景有哪些?
大数据·阿里云·rpa
微盛企微增长小知识5 小时前
2025企业微信服务商测评:头部服务商微盛AI·企微管家技术实力与落地效果解析
大数据·人工智能·企业微信