文章目录
TensorBoard可视化
python
import tensorflow as tf
# 定义命名空间
with tf.name_scope('input'):
# fetch:就是同时运行多个op的意思
# 定义名称,会在tensorboard中代替显示
input1 = tf.constant(3.0,name='A')
input2 = tf.constant(4.0,name='B')
input3 = tf.constant(5.0,name='C')
with tf.name_scope('op'):
#加法
add = tf.add(input2,input3)
#乘法
mul = tf.multiply(input1,add)
with tf.Session() as ss:
#默认在当前py目录下的logs文件夹,没有会自己创建
result = ss.run([mul,add])
wirter = tf.summary.FileWriter('logs/demo/',ss.graph)
print(result)
[27.0, 9.0]
这段代码主要演示了如何使用TensorFlow和TensorBoard创建和可视化计算图。
TensorFlow是一个基于数据流图进行数值计算的开源软件库,具有快速的计算速度和灵活的构建方式,被广泛应用于机器学习、深度学习等领域。而TensorBoard是TensorFlow提供的一个可视化工具,可以帮助开发者更好地理解、调试和优化TensorFlow中的计算图。
在这段代码中,首先通过tf.constant
方法创建了三个常量input1
、input2
和input3
,分别赋值为3.0、4.0和5.0,并给这些常量取了一个别名,分别为"A"、"B"和"C",这样在后续的TensorBoard中我们就可以清晰地看到它们之间的关系。
接着,使用tf.add
和tf.multiply
方法分别定义了加法和乘法操作,其中加法使用了input2
和input3
,乘法使用了input1
和加法的结果。在这里也定义了两个命名空间input
和op
,分别代表输入和操作的过程。
然后,使用with tf.Session() as ss:
创建一个会话,用ss.run
方法来运行计算图,并将结果保存在result
中。
最后,使用tf.summary.FileWriter
方法将计算图写入到logs/demo/
目录下,以便在TensorBoard中查看。运行python 文件名.py
后,在命令行中输入tensorboard --logdir=logs/demo
启动TensorBoard服务,打开浏览器,输入http://localhost:6006/
即可访问TensorBoard的可视化界面。
在TensorBoard界面中,可以查看到计算图的可视化结构、常量的取值、操作的过程等信息,帮助开发者更好地理解、调试和优化TensorFlow的计算图。
TensorBoard案例
python
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import sys
import os
import tensorflow as tf
import warnings
warnings.filterwarnings("ignore")
from tensorflow.examples.tutorials.mnist import input_data
max_steps = 200 # 最大迭代次数 默认1000
learning_rate = 0.001 # 学习率
dropout = 0.9 # dropout时随机保留神经元的比例
data_dir = os.path.join('data', 'mnist')# 样本数据存储的路径
if not os.path.exists('log'):
os.mkdir('log')
log_dir = 'log' # 输出日志保存的路径
mnist = input_data.read_data_sets("MNIST_data",one_hot=True)
sess = tf.InteractiveSession()
with tf.name_scope('input'):
x = tf.placeholder(tf.float32, [None, 784], name='x-input')
y_ = tf.placeholder(tf.float32, [None, 10], name='y-input')
#使用tf.summary.image保存图像信息,在tensorboard上还原出输入的特征数据对应的图片
with tf.name_scope('input_reshape'):
image_shaped_input = tf.reshape(x, [-1, 28, 28, 1])
tf.summary.image('input', image_shaped_input, 10)
def weight_variable(shape):
"""Create a weight variable with appropriate initialization."""
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
"""Create a bias variable with appropriate initialization."""
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def variable_summaries(var):
"""Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
with tf.name_scope('summaries'):
# 计算参数的均值,并使用tf.summary.scaler记录
mean = tf.reduce_mean(var)
tf.summary.scalar('mean', mean)
# 计算参数的标准差
with tf.name_scope('stddev'):
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
# 使用tf.summary.scaler记录记录下标准差,最大值,最小值
tf.summary.scalar('stddev', stddev)
tf.summary.scalar('max', tf.reduce_max(var))
tf.summary.scalar('min', tf.reduce_min(var))
# 用直方图记录参数的分布
tf.summary.histogram('histogram', var)
"""
构建神经网络层
创建第一层隐藏层
创建一个构建隐藏层的方法,输入的参数有:
input_tensor:特征数据
input_dim:输入数据的维度大小
output_dim:输出数据的维度大小(=隐层神经元个数)
layer_name:命名空间
act=tf.nn.relu:激活函数(默认是relu)
"""
def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu):
"""Reusable code for making a simple neural net layer.
It does a matrix multiply, bias add, and then uses relu to nonlinearize.
It also sets up name scoping so that the resultant graph is easy to read,
and adds a number of summary ops.
"""
# 设置命名空间
with tf.name_scope(layer_name):
# 调用之前的方法初始化权重w,并且调用参数信息的记录方法,记录w的信息
with tf.name_scope('weights'):
weights = weight_variable([input_dim, output_dim]) #神经元数量
variable_summaries(weights)
# 调用之前的方法初始化权重b,并且调用参数信息的记录方法,记录b的信息
with tf.name_scope('biases'):
biases = bias_variable([output_dim])
variable_summaries(biases)
# 执行wx+b的线性计算,并且用直方图记录下来
with tf.name_scope('linear_compute'):
preactivate = tf.matmul(input_tensor, weights) + biases
tf.summary.histogram('linear', preactivate)
# 将线性输出经过激励函数,并将输出也用直方图记录下来
activations = act(preactivate, name='activation')
tf.summary.histogram('activations', activations)
# 返回激励层的最终输出
return activations
hidden1 = nn_layer(x, 784, 500, 'layer1')
"""
创建一个dropout层,,随机关闭掉hidden1的一些神经元,并记录keep_prob
"""
with tf.name_scope('dropout'):
keep_prob = tf.placeholder(tf.float32)
tf.summary.scalar('dropout_keep_probability', keep_prob)
dropped = tf.nn.dropout(hidden1, keep_prob)
"""
创建一个输出层,输入的维度是上一层的输出:500,输出的维度是分类的类别种类:10,
激活函数设置为全等映射identity.(暂且先别使用softmax,会放在之后的损失函数中一起计算)
"""
y = nn_layer(dropped, 500, 10, 'layer2', act=tf.identity)
"""
创建损失函数
使用tf.nn.softmax_cross_entropy_with_logits来计算softmax并计算交叉熵损失,并且求均值作为最终的损失值。
"""
with tf.name_scope('loss'):
# 计算交叉熵损失(每个样本都会有一个损失)
diff = tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y)
with tf.name_scope('total'):
# 计算所有样本交叉熵损失的均值
cross_entropy = tf.reduce_mean(diff)
tf.summary.scalar('loss', cross_entropy)
"""
训练,并计算准确率
使用AdamOptimizer优化器训练模型,最小化交叉熵损失
计算准确率,并用tf.summary.scalar记录准确率
"""
with tf.name_scope('train'):
train_step = tf.train.AdamOptimizer(learning_rate).minimize(
cross_entropy)
with tf.name_scope('accuracy'):
with tf.name_scope('correct_prediction'):
# 分别将预测和真实的标签中取出最大值的索引,弱相同则返回1(true),不同则返回0(false)
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
with tf.name_scope('accuracy'):
# 求均值即为准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
tf.summary.scalar('accuracy', accuracy)
# summaries合并
merged = tf.summary.merge_all()
# 写到指定的磁盘路径中
#删除src路径下所有文件
def delete_file_folder(src):
'''delete files and folders'''
if os.path.isfile(src):
try:
os.remove(src)
except:
pass
elif os.path.isdir(src):
for item in os.listdir(src):
itemsrc=os.path.join(src,item)
delete_file_folder(itemsrc)
try:
os.rmdir(src)
except:
pass
#删除之前生成的log
if os.path.exists(log_dir + '/train'):
delete_file_folder(log_dir + '/train')
if os.path.exists(log_dir + '/test'):
delete_file_folder(log_dir + '/test')
train_writer = tf.summary.FileWriter(log_dir + '/train', sess.graph)
test_writer = tf.summary.FileWriter(log_dir + '/test')
# 运行初始化所有变量
tf.global_variables_initializer().run()
#现在我们要获取之后要喂入的数据
def feed_dict(train):
"""Make a TensorFlow feed_dict: maps data onto Tensor placeholders."""
if train:
xs, ys = mnist.train.next_batch(100)
k = dropout
else:
xs, ys = mnist.test.images, mnist.test.labels
k = 1.0
return {x: xs, y_: ys, keep_prob: k}
"""
开始训练模型。 每隔10步,就进行一次merge, 并打印一次测试数据集的准确率,
然后将测试数据集的各种summary信息写进日志中。 每隔100步,记录原信息
其他每一步时都记录下训练集的summary信息并写到日志中。
"""
for i in range(max_steps):
if i % 10 == 0: # 记录测试集的summary与accuracy
summary, acc = sess.run([merged, accuracy], feed_dict=feed_dict(False))
test_writer.add_summary(summary, i)
print('Accuracy at step %s: %s' % (i, acc))
else: # 记录训练集的summary
if i % 100 == 99: # Record execution stats
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
summary, _ = sess.run([merged, train_step],
feed_dict=feed_dict(True),
options=run_options,
run_metadata=run_metadata)
train_writer.add_run_metadata(run_metadata, 'step%03d' % i)
train_writer.add_summary(summary, i)
print('Adding run metadata for', i)
else: # Record a summary
summary, _ = sess.run([merged, train_step], feed_dict=feed_dict(True))
train_writer.add_summary(summary, i)
train_writer.close()
test_writer.close()
python
WARNING:tensorflow:From <ipython-input-3-27b4be5f38e0>:25: read_data_sets (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
Instructions for updating:
Please use alternatives such as official/mnist/dataset.py from tensorflow/models.
WARNING:tensorflow:From /home/nlp/anaconda3/lib/python3.7/site-packages/tensorflow/contrib/learn/python/learn/datasets/mnist.py:260: maybe_download (from tensorflow.contrib.learn.python.learn.datasets.base) is deprecated and will be removed in a future version.
Instructions for updating:
Please write your own downloading logic.
WARNING:tensorflow:From /home/nlp/anaconda3/lib/python3.7/site-packages/tensorflow/contrib/learn/python/learn/datasets/mnist.py:262: extract_images (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
Instructions for updating:
Please use tf.data to implement this functionality.
Extracting MNIST_data/train-images-idx3-ubyte.gz
WARNING:tensorflow:From /home/nlp/anaconda3/lib/python3.7/site-packages/tensorflow/contrib/learn/python/learn/datasets/mnist.py:267: extract_labels (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
Instructions for updating:
Please use tf.data to implement this functionality.
Extracting MNIST_data/train-labels-idx1-ubyte.gz
WARNING:tensorflow:From /home/nlp/anaconda3/lib/python3.7/site-packages/tensorflow/contrib/learn/python/learn/datasets/mnist.py:110: dense_to_one_hot (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
Instructions for updating:
Please use tf.one_hot on tensors.
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
WARNING:tensorflow:From /home/nlp/anaconda3/lib/python3.7/site-packages/tensorflow/contrib/learn/python/learn/datasets/mnist.py:290: DataSet.__init__ (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
Instructions for updating:
Please use alternatives such as official/mnist/dataset.py from tensorflow/models.
WARNING:tensorflow:From <ipython-input-3-27b4be5f38e0>:109: calling dropout (from tensorflow.python.ops.nn_ops) with keep_prob is deprecated and will be removed in a future version.
Instructions for updating:
Please use `rate` instead of `keep_prob`. Rate should be set to `rate = 1 - keep_prob`.
WARNING:tensorflow:From <ipython-input-3-27b4be5f38e0>:123: softmax_cross_entropy_with_logits (from tensorflow.python.ops.nn_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Future major versions of TensorFlow will allow gradients to flow
into the labels input on backprop by default.
See `tf.nn.softmax_cross_entropy_with_logits_v2`.
Accuracy at step 0: 0.0639
Accuracy at step 10: 0.7139
Accuracy at step 20: 0.8271
Accuracy at step 30: 0.8647
Accuracy at step 40: 0.8818
Accuracy at step 50: 0.8932
Accuracy at step 60: 0.8984
Accuracy at step 70: 0.8986
Accuracy at step 80: 0.9062
Accuracy at step 90: 0.9128
Adding run metadata for 99
Accuracy at step 100: 0.9134
Accuracy at step 110: 0.9212
Accuracy at step 120: 0.9156
Accuracy at step 130: 0.9226
Accuracy at step 140: 0.9251
Accuracy at step 150: 0.9238
Accuracy at step 160: 0.9259
Accuracy at step 170: 0.9265
Accuracy at step 180: 0.9291
Accuracy at step 190: 0.932
Adding run metadata for 199
这段代码主要演示了如何使用Tensorflow和TensorBoard创建和可视化卷积神经网络(CNN)。
CNN是一种深度学习结构,是神经网络中的一种,可以应用于图像识别、语音识别等领域。在这段代码中,我们将使用CNN完成MNIST手写数字识别任务,输入为28×28像素的手写数字图像,输出为0-9其中一种数字的概率。
首先,通过tf.placeholder
方法创建了两个placeholder变量x和y_,分别表示网络的输入和输出。在输入数据的处理上,为了将输入数据(28×28个像素点)可视化,使用了tf.summary.image
记录了图像信息,用reshape
方法将输入特征数据进行重构,确保输入的图像是28×28×1的大小,并用tf.summary.image
将其记录下来。
其次,在神经网络的构建方面,我们创建了两个隐藏层和一个输出层。其中,每一个隐藏层都包含一个线性计算层和一个ReLU激活函数层,并用tf.summary.histogram
方法记录下每一层的相关参数,以便在TensorBoard中查看各个层的变化。
然后,我们在第一个隐藏层后加入了dropout
层,随机关闭掉一定比例的神经元,以避免过拟合。在输出层中,使用tf.nn.softmax cross_entropy_with_logits
计算交叉熵损失,并用tf.summary.scalar
方法记录损失信息。我们使用tf.train.AdamOptimizer
训练模型,并使用tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
计算准确率,并用tf.summary.scalar
记录准确率信息。
最后,我们定义了merged
变量,将所有需要记录下来的信息汇总在一起,并通过tf.summary.merge_all()
的方法全部合并,最后通过tf.summary.FileWriter
方法将所有的信息写入到日志文件中。在训练过程中,每隔10步就记录下测试集的准确率和相关信息,并记录到日志中;每隔100步记录下训练集的原信息,并记录到日志中;其他步数记录训练集的summary以及写入到日志中。最终,通过train_writer.close()
和test_writer.close()
关闭日志文件。
整个代码中,命名空间的使用规范,各个参数的记录方式清晰明了,使得我们在TensorBoard中能够清晰地了解每一层的参数变化、loss的变化、准确率的变化等。因此,TensorBoard能够很好地帮助开发者进行模型的调试、分析和优化。