代码随想录算法训练营第五十天| LeetCode300.最长递增子序列、674. 最长连续递增序列、718. 最长重复子数组、1143.最长公共子序列

300.最长递增子序列

题目描述: 300.最长递增子序列.

解法

dp

python 复制代码
class Solution(object):
    def lengthOfLIS(self, nums):
        if len(nums) <= 1:
            return len(nums)
        dp = [1] * len(nums)
        res = 0
        for i in range(1,len(nums)):
            for j in range(i):
                if nums[j] < nums[i]:
                    dp[i] = max(dp[i],dp[j]+1)
            res = max(res,dp[i])
        return res

考虑的是:以当前节点为终点的递增序列,最长为多少。

674. 最长连续递增序列

题目描述: 674. 最长连续递增序列.

解法

dp

python 复制代码
class Solution(object):
    def findLengthOfLCIS(self, nums):
        if len(nums) <= 1:
            return len(nums)
        dp = [1] * len(nums)
        res = 0
        for i in range(1,len(nums)):
            if nums[i-1] < nums[i]:
                dp[i] = dp[i-1] + 1
            res = max(res,dp[i])
        return res

718. 最长重复子数组

题目描述: 718. 最长重复子数组.

解法

二维dp

python 复制代码
class Solution:
    def findLength(self, nums1: List[int], nums2: List[int]) -> int:
        dp = [[0] * (len(nums1)+1) for _ in range(len(nums2)+1)]
        res = 0
        for i in range(1,len(nums2)+1):
            for j in range(1,len(nums1)+1):
                if nums2[i-1] ==  nums1[j-1]:
                    dp[i][j] = dp[i-1][j-1] + 1
                res = max(res,dp[i][j])
        return res

滚动dp

python 复制代码
class Solution(object):
    def findLength(self, nums1, nums2):
        dp = [0]*(len(nums1)+1)
        res = 0
        for i in range(1,len(nums2)+1):
            for j in range(len(nums1),0,-1):
                if nums2[i-1] == nums1[j-1]:
                    dp[j] = dp[j-1] + 1
                else:
                    dp[j] = 0
                res = max(res,dp[j])
        return res

只要dp[i][j]是由dp[i-1][j]或者dp[i-1][j-1]决定的,就可以使用滚动数组

本体的主要思路就是,遍历每个字符串的每一位,然后对比以该位为终点的相同的子串有多少位,如果该位相同,那就在前一位的基础上+1,否则的话,就置为0

1143.最长公共子序列

题目描述: 1143.最长公共子序列.

解法

二维dp

python 复制代码
class Solution(object):
    def longestCommonSubsequence(self, text1, text2):
        dp = [[0] * (len(text2)+1) for _ in range(len(text1)+1)]
        for i in range(1,len(text1)+1):
            for j in range(1,len(text2)+1):
                if text1[i-1] == text2[j-1]:
                    dp[i][j] = dp[i-1][j-1] + 1
                else:
                    dp[i][j] = max(dp[i][j-1],dp[i-1][j])
                res = max(res,dp[i][j])
        return dp[len(text1)][len(text2)]

需要考虑两个字符串任意减少一个的情况

子序列和子数组不同的就在于,子数组一定是连续的,所以考虑dp[i][j]时一定要考虑dp[i-1][j-1]

但是子序列就不一样了,如果dp[i][j]不能由dp[i-1][j-1]得到,那就得考虑每个单词各削减一位的情况了。

同样,因为是子序列,所以不需要考虑最长在哪,返回最后的dp就一定是最长的子序列长度

滚动dp

python 复制代码
class Solution(object):
    def longestCommonSubsequence(self, text1, text2):
        dp = [0]* (len(text1)+1)
        res = 0
        for i in range(1,len(text2)+1):
            pre = 0
            for j in range(1,len(text1)+1):
                cur = dp[j]
                if text1[j-1] == text2[i-1]:
                    dp[j] = pre + 1
                else:
                    dp[j] = max(dp[j],dp[j-1])
                pre = cur
        return dp[len(text1)]

当使用滚动dp时,就要考虑当前的这个元素和什么有关,如果仅是和上有关,那就可以将dp的内容倒序更新,但是如果和左也有关系,那就只能正序更新,然后记录更新之前的当前元素。

相关推荐
2401_827364561 小时前
迷宫【BFS+结构体\pair】
算法·宽度优先
Bruce Jue3 小时前
算法刷题--贪心算法
算法·贪心算法
慕容魏4 小时前
入门到入土,Java学习 day16(算法1)
java·学习·算法
认真的小羽❅4 小时前
动态规划详解(二):从暴力递归到动态规划的完整优化之路
java·算法·动态规划
LiDAR点云5 小时前
Matlab中快速查找元素索引号
数据结构·算法·matlab
CYRUS_STUDIO5 小时前
安卓逆向魔改版 Base64 算法还原
android·算法·逆向
CYRUS_STUDIO6 小时前
安卓实现魔改版 Base64 算法
android·算法·逆向
一只_程序媛6 小时前
【leetcode hot 100 142】环形链表Ⅱ
算法·leetcode·链表
Luis Li 的猫猫6 小时前
基于MATLAB的冰块变化仿真
开发语言·图像处理·人工智能·算法·matlab
郭涤生6 小时前
并发操作的同步_第四章_《C++并发编程实战》笔记
开发语言·c++·算法