How Language Model Hallucinations Can Snowball

本文是LLM系列文章,针对《How Language Model Hallucinations Can Snowball》的翻译。

语言模型幻觉是如何产生雪球的

  • 摘要
  • [1 引言](#1 引言)
  • [2 为什么我们期待幻觉像滚雪球一样越滚越大?](#2 为什么我们期待幻觉像滚雪球一样越滚越大?)
  • [3 实验](#3 实验)
  • [4 我们能防止雪球幻觉吗?](#4 我们能防止雪球幻觉吗?)
  • [5 相关工作](#5 相关工作)
  • [6 结论](#6 结论)
  • 局限性

摘要

在实际应用中使用语言模型的一个主要风险是它们容易产生错误陈述的幻觉。幻觉通常归因于LMs中的知识差距,但我们假设,在某些情况下,当证明先前产生的幻觉时,LMs会输出他们可以单独识别为不正确的虚假声明。我们构建了三个问答数据集,其中ChatGPT和GPT-4经常陈述错误的答案,并提供至少一个错误声明的解释。至关重要的是,我们发现ChatGPT和GPT-4可以分别识别67%和87%的错误。我们将这种现象称为幻觉滚雪球:LM过度犯早期错误,导致更多错误,否则就不会犯。

1 引言

2 为什么我们期待幻觉像滚雪球一样越滚越大?

3 实验

4 我们能防止雪球幻觉吗?

5 相关工作

6 结论

我们定义了幻觉滚雪球的现象,并从最先进的模型中证明了它在生成中的普遍性,从而导致了基于简单事实的幻觉,否则这些幻觉是不会发生的。我们的研究结果指出,训练语言模型的风险在于,以牺牲真实性为代价,不加区分地优先考虑流利性和连贯性,我们鼓励未来的工作研究模型开发各个层面的补救措施。

局限性

我们关注的是英语问答中的幻觉滚雪球,而不是在其他任务中探索它,比如摘要或代码生成。

此外,我们只在两个专有模型上进行实验,即ChatGPT和GPT-4,因为它们在许多基准测试上具有最先进的性能。由于这些模型的API的限制,我们无法访问它们输出的概率分布,也无法对它们进行微调。这限制了我们探索潜在缓解策略的能力。访问输出分布将使我们能够使用波束搜索等替代采样方法来研究减轻滚雪球般的幻觉问题。拥有微调模型的能力将使我们能够探索使用不同注释的指令调整是否可以更好地处理我们用来煽动幻觉滚雪球的问题。

相关推荐
萤丰信息1 小时前
智慧园区:科技赋能的未来产业生态新载体
大数据·运维·人工智能·科技·智慧园区
ASD123asfadxv1 小时前
【医疗影像检测】VFNet模型在医疗器械目标检测中的应用与优化
人工智能·目标检测·计算机视觉
小真zzz1 小时前
2025-2026年AI PPT工具排行榜:ChatPPT的全面领先与竞品格局解析
人工智能·ai·powerpoint·ppt·aippt
智慧化智能化数字化方案1 小时前
详解人工智能安全治理框架(中文版)【附全文阅读】
大数据·人工智能·人工智能安全治理框架
人工智能培训2 小时前
开源与闭源大模型的竞争未来会如何?
人工智能·机器学习·语言模型·大模型·大模型幻觉·开源大模型·闭源大模型
啊阿狸不会拉杆2 小时前
《机器学习》第六章-强化学习
人工智能·算法·机器学习·ai·机器人·强化学习·ml
人工智能AI技术2 小时前
【Agent从入门到实践】21 Prompt工程基础:为Agent设计“思考指令”,简单有效即可
人工智能·python
式5162 小时前
大模型学习基础(九)LoRA微调原理
人工智能·深度学习·学习
CCPC不拿奖不改名2 小时前
python基础面试编程题汇总+个人练习(入门+结构+函数+面向对象编程)--需要自取
开发语言·人工智能·python·学习·自然语言处理·面试·职场和发展
菜鸟‍2 小时前
【论文学习】一种用于医学图像分割单源域泛化的混合双增强约束框架 || 视觉 Transformer 在通用图像分割中的 “缺失环节”
人工智能·深度学习·计算机视觉