How Language Model Hallucinations Can Snowball

本文是LLM系列文章,针对《How Language Model Hallucinations Can Snowball》的翻译。

语言模型幻觉是如何产生雪球的

  • 摘要
  • [1 引言](#1 引言)
  • [2 为什么我们期待幻觉像滚雪球一样越滚越大?](#2 为什么我们期待幻觉像滚雪球一样越滚越大?)
  • [3 实验](#3 实验)
  • [4 我们能防止雪球幻觉吗?](#4 我们能防止雪球幻觉吗?)
  • [5 相关工作](#5 相关工作)
  • [6 结论](#6 结论)
  • 局限性

摘要

在实际应用中使用语言模型的一个主要风险是它们容易产生错误陈述的幻觉。幻觉通常归因于LMs中的知识差距,但我们假设,在某些情况下,当证明先前产生的幻觉时,LMs会输出他们可以单独识别为不正确的虚假声明。我们构建了三个问答数据集,其中ChatGPT和GPT-4经常陈述错误的答案,并提供至少一个错误声明的解释。至关重要的是,我们发现ChatGPT和GPT-4可以分别识别67%和87%的错误。我们将这种现象称为幻觉滚雪球:LM过度犯早期错误,导致更多错误,否则就不会犯。

1 引言

2 为什么我们期待幻觉像滚雪球一样越滚越大?

3 实验

4 我们能防止雪球幻觉吗?

5 相关工作

6 结论

我们定义了幻觉滚雪球的现象,并从最先进的模型中证明了它在生成中的普遍性,从而导致了基于简单事实的幻觉,否则这些幻觉是不会发生的。我们的研究结果指出,训练语言模型的风险在于,以牺牲真实性为代价,不加区分地优先考虑流利性和连贯性,我们鼓励未来的工作研究模型开发各个层面的补救措施。

局限性

我们关注的是英语问答中的幻觉滚雪球,而不是在其他任务中探索它,比如摘要或代码生成。

此外,我们只在两个专有模型上进行实验,即ChatGPT和GPT-4,因为它们在许多基准测试上具有最先进的性能。由于这些模型的API的限制,我们无法访问它们输出的概率分布,也无法对它们进行微调。这限制了我们探索潜在缓解策略的能力。访问输出分布将使我们能够使用波束搜索等替代采样方法来研究减轻滚雪球般的幻觉问题。拥有微调模型的能力将使我们能够探索使用不同注释的指令调整是否可以更好地处理我们用来煽动幻觉滚雪球的问题。

相关推荐
IT古董15 分钟前
【漫话机器学习系列】266.雅可比矩阵(Jacobian Matrix)
人工智能·机器学习
LeonDL16823 分钟前
YOLOv8 在单片机上的几种部署方案
人工智能·python·单片机·嵌入式硬件·深度学习·yolo·yolov8 在单片机上的部署
卧式纯绿28 分钟前
卷积神经网络基础(九)
人工智能·python·深度学习·神经网络·机器学习·cnn
LetsonH29 分钟前
PyTorch Geometric(PyG):基于PyTorch的图神经网络(GNN)开发框架
人工智能·pytorch·神经网络
LetsonH1 小时前
Pyro:基于PyTorch的概率编程框架
人工智能·pytorch·python
智联视频超融合平台1 小时前
智慧赋能光伏运维——无人机巡检+地面监控双链路覆盖,打造光伏电站管理新标杆
运维·人工智能·网络协议·信息可视化·音视频·无人机
硅谷秋水1 小时前
视觉-和-语言导航的综述:任务、方法和未来方向
深度学习·计算机视觉·语言模型·机器人
Listennnn1 小时前
Neo4j数据库
数据库·人工智能·neo4j
微刻时光2 小时前
DeepSeek赋能电商,智能客服机器人破解大型活动人力困境
人工智能·机器人·自动化·rpa·deepseek·影刀证书·影刀实战
沫儿笙2 小时前
机器人弧焊二八混合气体节约
人工智能·物联网·机器人