plt函数显示图片 & 在图片上画边界框 & 边界框坐标转换

一.读取图片并显示图片

python 复制代码
%matplotlib inline
import torch
from d2l import torch as d2l
python 复制代码
'''读取图片'''
image_path = '../data/images/cat_dog_new.jpg'
# 创建画板
figure = d2l.set_figsize()
image = d2l.plt.imread(image_path)
d2l.plt.imshow(image);

二.给出一个(x左上角,y左上角,x右下角,y右下角)类型的框,在图片上画出该框

python 复制代码
'''边界框'''
box = (60,50,460,510)
python 复制代码
def bbox_to_rect(bbox, color):
    # 将边界框(左上x,左上y,右下x,右下y)格式转换成matplotlib格式:
    # ((左上x,左上y),宽,高)
    return d2l.plt.Rectangle(
        xy=(bbox[0], bbox[1]), width=bbox[2]-bbox[0], height=bbox[3]-bbox[1],
        fill=False, edgecolor=color, linewidth=2)
python 复制代码
# 返回一个画布,该画布上面有图画image
fig = d2l.plt.imshow(image)
# 在该画布上画一个矩形框
fig.axes.add_patch(bbox_to_rect(box,'red'));

三. 边界框坐标转换

3.1 左上角右下角格式的坐标 --> 边界框中心坐标,框的高和宽

原:(x1,y1,x2,y2)

w = x2-x1

h = y2-y1

中心坐标 = (x1+w/2,y1+h/2)

python 复制代码
def box_corner_to_center(boxes):
    # 因为以后boxes可能不止一个,所以 boxes[:,0]取出所有行的第一列
    x1,y1,x2,y2 = boxes[:,0],boxes[:,1],boxes[:,2],boxes[:,3]
    w = x2-x1
    h = y2-y1
    x_center,y_center = x1 + w/2, y1 + h/2
    # axis=-1表示在最后一个维度上进行堆叠
    boxes = torch.stack((x_center,y_center,w,h),axis = -1)
    return boxes

创建两个左上角走下角格式的坐标boxes

python 复制代码
dog_bbox, cat_bbox = [60.0, 45.0, 378.0, 516.0], [400.0, 112.0, 655.0, 493.0]
boxes = torch.tensor((dog_bbox,cat_bbox))
print(boxes)
boxes.shape
python 复制代码
tensor([[ 60.,  45., 378., 516.],
        [400., 112., 655., 493.]])

torch.Size([2, 4])

运行结果

python 复制代码
box_corner_to_center(boxes)
python 复制代码
tensor([[219.0000, 280.5000, 471.0000, 318.0000],
        [527.5000, 302.5000, 381.0000, 255.0000]])
torch.Size([2, 4])

3.2 边界框中心坐标,框的高和宽 --> 左上角右下角格式的坐标

原:(x_center,y_center,w,h)

x1 = x_center - 0.5w
y1 = y_center - 0.5
h

x2 = x_center + 0.5w
y2 = y_center + 0.5
h

python 复制代码
def box_center_to_corner(boxes):
    x_center,y_center,w,h = boxes[:,0],boxes[:,1],boxes[:,2],boxes[:,3]
    x1,y1= x_center-0.5*w , y_center-0.5*h
    x2,y2= x_center+0.5*w , y_center+0.5*h
    boxes = torch.stack((x1,y1,x2,y2),axis=-1)
    return boxes
python 复制代码
boxes = box_center_to_corner(boxes)
print(boxes)
boxes.shape
python 复制代码
tensor([[ 60.,  45., 378., 516.],
        [400., 112., 655., 493.]])

torch.Size([2, 4])
相关推荐
焦耳加热22 分钟前
阿德莱德大学Nat. Commun.:盐模板策略实现废弃塑料到单原子催化剂的高值转化,推动环境与能源催化应用
人工智能·算法·机器学习·能源·材料工程
深空数字孪生24 分钟前
储能调峰新实践:智慧能源平台如何保障风电消纳与电网稳定?
大数据·人工智能·物联网
wan5555cn30 分钟前
多张图片生成视频模型技术深度解析
人工智能·笔记·深度学习·算法·音视频
格林威1 小时前
机器视觉检测的光源基础知识及光源选型
人工智能·深度学习·数码相机·yolo·计算机视觉·视觉检测
今天也要学习吖2 小时前
谷歌nano banana官方Prompt模板发布,解锁六大图像生成风格
人工智能·学习·ai·prompt·nano banana·谷歌ai
Hello123网站2 小时前
glean-企业级AI搜索和知识发现平台
人工智能·产品运营·ai工具
AKAMAI2 小时前
Queue-it 为数十亿用户增强在线体验
人工智能·云原生·云计算
索迪迈科技2 小时前
INDEMIND亮相2025科技创变者大会,以机器人空间智能技术解锁具身智能新边界
人工智能·机器人·扫地机器人·空间智能·陪伴机器人
栒U2 小时前
一文从零部署vLLM+qwen0.5b(mac本地版,不可以实操GPU单元)
人工智能·macos·vllm
沫儿笙3 小时前
FANUC发那科焊接机器人铝材焊接节气
人工智能·机器人