深度学习-全连接神经网络-训练过程-模型正则与超参数调优- [北邮鲁鹏]

目录标题

神经网络中的超参数

超参数

  • 网络结构:隐层神经元个数,网络层数,非线性单元选择等
  • 优化相关:学习率、dorpout比率、正则项强度等

学习率

学习率过大,训练过程无法收敛

学习率偏大,在最小值附近震荡,达不到最优

学习率太小,收敛时间较长

学习率适中,收敛快、结果好

超参数优化方法

网格搜索法

  1. 每个超参数分别取几个值,组合这些超参数值,形成多组超参数;
  2. 在验证集上评估每组超参数的模型性能;
  3. 选择性能最优的模型所采用的那组值作为最终的超参数的值。


缺点:横轴3个测试值*纵轴3个测试值=9组实验,将注意力放在了不重要的参数δ

随机搜索法

  1. 参数空间内随机取点,每个点对应一组超参数;
  2. 在验证集上评估每组超参数的模型性能;
  3. 选择性能最优的模型所采用的那组值作为最终的超参数的值。

    优点:横轴9个测试值&纵轴9个测试值=9组实验

超参数搜索策略

粗搜索

利用随机法在较大范围里采样超参数,训练一个周期,依据验证集正确率缩小超参数范围

精搜索

利用随机法在前述缩小的范围内采样超参数,运行模型五到十个周期,选择验证集上精度最高的那组超参数

超参数的标尺空间

例:假设最优值在0.0001到1之间,如果在0-1之间采样,90%会在0.1-1之间。

最优的值在[0.0001,1]之间,我们该如何采样?

建议:对于学习率、正则项强度这类超参数,在对数空间上进行随机采样更合适!
在1~0的量级范围内,差别不大,不敏感,所以一般在log对数空间上进行随机采样。

在log空间上,0.0001-0.001-0.01-0.1-1之间的间隔是等距的

相关推荐
小白量化25 分钟前
聚宽策略分享-1年化98国九条后中小板微盘小改
大数据·数据库·人工智能·量化·qmt
张拭心5 小时前
Cursor 又偷偷更新,这个功能太实用:Visual Editor for Cursor Browser
前端·人工智能
吴佳浩5 小时前
大模型 MoE,你明白了么?
人工智能·llm
Blossom.1187 小时前
基于Embedding+图神经网络的开源软件供应链漏洞检测:从SBOM到自动修复的完整实践
人工智能·分布式·深度学习·神经网络·copilot·开源软件·embedding
t198751287 小时前
电力系统经典节点系统潮流计算MATLAB实现
人工智能·算法·matlab
万悉科技7 小时前
比 Profound 更适合中国企业的GEO产品
大数据·人工智能
mqiqe7 小时前
vLLM(vLLM.ai)生产环境部署大模型
人工智能·vllm
V1ncent Chen7 小时前
机器是如何“洞察“世界的?:深度学习
人工智能·深度学习
AI营销前沿7 小时前
中国AI营销专家深度解析:谁在定义AI营销的未来?
人工智能
前端大卫8 小时前
【重磅福利】学生认证可免费领取 Gemini 3 Pro 一年
前端·人工智能