LARGE LANGUAGE MODELS AS OPTIMIZERS

本文是LLM系列文章,针对《LARGE LANGUAGE MODELS AS OPTIMIZERS》的翻译。

作为优化器的大型语言模型

  • 摘要
  • [1 引言](#1 引言)
  • [2 OPRO:LLM作为优化器](#2 OPRO:LLM作为优化器)
  • [3 激励性例子:数学优化](#3 激励性例子:数学优化)
  • [4 应用:提示优化](#4 应用:提示优化)
  • [5 提示优化实验](#5 提示优化实验)
  • [6 相关工作](#6 相关工作)
  • [7 结论](#7 结论)

摘要

优化无处不在。虽然基于导数的算法是解决各种问题的强大工具,但梯度的缺乏给许多现实世界的应用带来了挑战。在这项工作中,我们提出了PROmpting优化(OPRO),这是一种利用大型语言模型(LLM)作为优化器的简单有效的方法,其中优化任务用自然语言描述。在每个优化步骤中,LLM都会从包含先前生成的解决方案及其值的提示中生成新的解决方案,然后对新解决方案进行评估,并将其添加到下一个优化步骤的提示中。我们首先展示了关于线性回归和旅行推销员问题的OPRO,然后继续进行提示优化,目标是找到最大限度提高任务准确性的指令。通过各种LLM,我们证明了OPRO优化的最佳提示在GSM8K上比人类设计的提示高出8%,在Big Bench Hard任务上高出50%。

1 引言

2 OPRO:LLM作为优化器

3 激励性例子:数学优化

4 应用:提示优化

5 提示优化实验

6 相关工作

7 结论

我们开始使用LLM作为优化器,LLM逐渐生成新的解决方案来优化目标函数。我们首先用线性回归和旅行推销员问题来激励OPRO,然后将其作为一个具体应用来进行提示优化。我们的评估表明,LLM有能力根据过去的优化轨迹逐步改进生成的解决方案。有趣的是,在小规模旅行推销员问题上,OPRO的性能与一些手工制作的启发式算法不相上下。在提示优化方面,优化后的提示显著优于GSM8K和Big Bench Hard上的人工设计提示,有时超过50%。

许多尚未解决的问题有待于未来对LLM进行优化研究。总的来说,如何降低对初始化的敏感性,更好地平衡开采与勘探,仍然是一个挑战。具体来说,对于提示优化,我们当前实现的一个限制是优化器LLM不能有效地利用训练集中的错误案例来推断有希望的方向,以改进生成的指令。在我们的实验中,我们尝试在元提示中包括错误案例,而不是在每个优化步骤从训练集中随机采样,但结果是相似的,这表明错误案例本身的信息不足以让优化器LLM掌握错误预测的原因。另一个限制是,提示优化需要训练集来计算指导优化过程的准确性。目前,训练集至少包含数十个样本,因此优化后的提示不会严重过拟合到训练样本。一个有希望的方向是,除了汇总的准确性之外,还包含关于错误情况的更丰富的反馈,并总结优化轨迹中区分高质量和低质量生成提示的关键特征。这样的信息可以通知优化器LLM如何比过去生成的指令更有效地改进,并且潜在地进一步减少提示优化所需的示例集大小。

相关推荐
查无此人byebye1 天前
突破性图像分词技术TiTok:32个Token实现高效图像重建与生成
人工智能
Niuguangshuo1 天前
DALL-E 2:从CLIP潜变量到高质量图像生成的突破
人工智能·深度学习·transformer
偷吃的耗子1 天前
【CNN算法理解】:基于训练好的MNIST CNN模型进行预测
人工智能·算法·cnn
Elastic 中国社区官方博客1 天前
跳过 MLOps:通过 Cloud Connect 使用 EIS 为自管理 Elasticsearch 提供托管云推理
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
北京耐用通信1 天前
耐达讯自动化Profinet转Devicenet网关:精细化工行业的“协议融合利器”
人工智能·物联网·网络协议·自动化·信息与通信
做萤石二次开发的哈哈1 天前
萤石云广播:智能语音广播,一键文字下发
人工智能·语音识别
技术狂人1681 天前
2026 智能体深度解析:落地真相、红利赛道与实操全指南(调研 100 + 案例干货)
人工智能·职场和发展·agent·商机
Bruk.Liu1 天前
(LangChain实战12):LangChain中的新型Chain之create_sql_query_chain
数据库·人工智能·sql·langchain
学电子她就能回来吗1 天前
深度学习速成:模型的使用与修改,保存与读取
人工智能·深度学习
友思特 智能感知1 天前
友思特案例 | 金属行业视觉检测案例四:挖掘机钢板表面光学字符识别(OCR)检测
人工智能·视觉检测·深度学习视觉检测