时序预测 | MATLAB实现ARMA自回归移动平均模型时间序列预测

时序预测 | MATLAB实现ARMA自回归移动平均模型时间序列预测

目录

预测效果




基本介绍

MATLAB实现ARMA时间序列预测(完整源码和数据)

本程序基于MATLAB的armax函数实现arma时间序列预测;

实现了模型趋势分析、序列平稳化、AIC准则模型参数识别与定阶、预测结果与误差分析过程,逻辑清晰。

数据为144个月的数据集,周期为一年,最终实现历史数据的预测和未来两年数据的预报!

基于自回归移动平均模型时间序列预测.

评价指标包括:MAE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。要求2018版本及以上。

程序设计

clike 复制代码
%%  参数设置
model_arima = arima(p_arima, d_arima, q_arima);
fit_arima = estimate(model_arima, trainData);
forecast_arima = forecast(fit_arima, numel(testData));
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
% 计算模型拟合优度
fit_ar_test = 1 - sum((testData - forecast_ar).^2) / sum((testData - mean(testData)).^2);
fit_arma_test = 1 - sum((testData - forecast_arma).^2) / sum((testData - mean(testData)).^2);
fit_arima_test = 1 - sum((testData - forecast_arima).^2) / sum((testData - mean(testData)).^2);
------------------------------------------------
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/132632834
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
[S,Q] = size(T);
% Randomly Generate the Input Weight Matrix
IW = rand(N,R) * 2 - 1;
% Randomly Generate the Bias Matrix
B = rand(N,1);
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
BiasMatrix = repmat(B,1,Q);
% Calculate the Layer Output Matrix H
tempH = IW * P + BiasMatrix;
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
switch TF
    case 'sig'
        H = 1 ./ (1 + exp(-tempH));
    case 'sin'
        H = sin(tempH);
    case 'hardlim'
        H = hardlim(tempH);
end
% Calculate the Output Weight Matrix
LW = pinv(H') * T';
%--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

参考资料

[1] https://blog.csdn.net/article/details/126072792?spm=1001.2014.3001.5502

[2] https://blog.csdn.net/article/details/126044265?spm=1001.2014.3001.5502

相关推荐
软件算法开发11 天前
基于遗传优化ELM网络的时间序列预测算法matlab仿真
算法·matlab·时间序列预测·elm·ga-elm
机器学习之心15 天前
SABO-CNN-BiGRU-Attention减法优化器优化卷积神经网络结合双向门控循环单元时间序列预测,含优化前后对比
时间序列预测·sabo-cnn-bigru·减法优化器优化·卷积神经网络双向门控循环单元
FranzLiszt184723 天前
时间序列预测——周期性解藕框架(PDF)
pdf·时间序列预测·patchtst
机器学习之心1 个月前
时序预测 | 改进图卷积+informer时间序列预测,pytorch架构
人工智能·pytorch·python·时间序列预测·informer·改进图卷积
矩阵猫咪2 个月前
【深度学习】时间序列预测、分类、异常检测、概率预测项目实战案例
人工智能·pytorch·深度学习·神经网络·机器学习·transformer·时间序列预测
机器学习之心2 个月前
时序预测 | Matlab基于TSA-LSTM-Attention被囊群优化算法优化长短期记忆网络融合注意力机制多变量多步时间序列预测
时间序列预测·lstm-attention·融合注意力机制·多变量多步·tsa-lstm·被囊群优化算法优化
阡之尘埃2 个月前
Python数据分析案例62——基于MAGU-LSTM的时间序列预测(记忆增强门控单元)
人工智能·python·深度学习·机器学习·数据分析·lstm·时间序列预测
Cyril_KI2 个月前
PyTorch搭建GNN(GCN、GraphSAGE和GAT)实现多节点、单节点内多变量输入多变量输出时空预测
pytorch·时间序列预测·gnn·时空预测
Desire.9843 个月前
Python 数学建模——ARMA 时间序列分析
python·数学建模·时间序列分析·arma
机器学习之心3 个月前
时序预测 | Matlab实现GA-CNN遗传算法优化卷积神经网络时间序列预测
时间序列预测·ga-cnn·遗传算法优化卷积神经网络