分类预测 | Matlab实现RBF-Adaboost多特征分类预测

分类预测 | Matlab实现RBF-Adaboost多特征分类预测

目录

效果一览


基本介绍

1.Matlab实现基于RBF-Adaboost数据分类预测(Matlab完整程序和数据)

2.多特征输入模型,直接替换数据就可以用。

3.语言为matlab。分类效果图,混淆矩阵图。

4.分类效果图,混淆矩阵图。

5.RBF-Adaboost的数据分类预测。

运行环境matlab2018及以上。

研究内容

RBF-AdaBoost是一种将RBF和AdaBoost两种机器学习技术结合起来使用的方法,旨在提高模型的性能和鲁棒性。具体而言,AdaBoost则是一种集成学习方法,它将多个弱分类器组合起来形成一个强分类器,其中每个分类器都是针对不同数据集和特征表示训练的。RBF-AdaBoost算法的基本思想是将RBF作为基模型,利用AdaBoost算法对其进行增强。具体而言,我们可以训练多个RBF模型,每个模型使用不同的数据集和特征表示,然后将它们的预测结果组合起来,形成一个更准确和鲁棒的模型。

程序设计

  • 完整程序和数据下载方式私信博主回复Matlab实现基于RBF-Adaboost数据分类预测
clike 复制代码
%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input );
t_train = T_train;
t_test  = T_test ;



%%  输出编码
t_train = ind2vec(t_train);
t_test  = ind2vec(t_test );

%%  数据反归一化
T_sim1 = vec2ind(t_sim1);
T_sim2 = vec2ind(t_sim2);

%%  性能评价
error1 = sum((T_sim1 == T_train)) / M * 100 ;
error2 = sum((T_sim2 == T_test )) / N * 100 ;

%%  绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['准确率=' num2str(error1) '%']};
title(string)
grid

figure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['准确率=' num2str(error2) '%']};
title(string)
grid

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502

[2] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502

相关推荐
机器学习之心9 天前
一区向量加权算法优化INFO-CNN-SVM卷积神经网络结合支持向量机多特征分类预测
算法·支持向量机·cnn·多特征分类预测·卷积神经网络结合支持向量机·info-cnn-svm
_清豆°1 个月前
机器学习(七)——集成学习(个体与集成、Boosting、Bagging、随机森林RF、结合策略、多样性增强、多样性度量、Python源码)
人工智能·随机森林·机器学习·adaboost·集成学习·boosting·bagging
机器学习之心2 个月前
PCA-SVM分类预测 | Matlab实现PCA-SVM主成分分析结合支持向量机多特征分类预测
支持向量机·分类·多特征分类预测·pca-svm·主成分分析结合支持向量机
正义的彬彬侠2 个月前
在AdaBoost中,分类错误的样本的权重会增大
人工智能·机器学习·adaboost·集成学习·boosting·自适应提升算法
正义的彬彬侠2 个月前
在AdaBoost中每轮训练后,为什么错误分类的样本权重会增大e^2αt倍
人工智能·机器学习·adaboost·集成学习·boosting·自适应提升算法
机器学习之心2 个月前
CNN-Attention分类预测 | Matlab实现多特征分类预测
cnn-attention·多特征分类预测
闲人编程2 个月前
Python AdaBoost自适应提升算法
开发语言·python·算法·数据分析·adaboost·自适应提升算法
开出南方的花2 个月前
机器学习篇-day06-集成学习-随机森林 Adaboost GBDT XGBoost
随机森林·机器学习·adaboost·scikit-learn·集成学习·xgboost·gbdt
机器学习之心5 个月前
[独家原创] CPO-RBF多特征分类预测 优化宽度+中心值+连接权值 (多输入单输出)Matlab代码
多特征分类预测·cpo-rbf·优化宽度·中心值
机器学习之心5 个月前
先用先发!小样本故障诊断新思路!Transformer-SVM组合模型多特征分类预测/故障诊断(Matlab)
支持向量机·分类·transformer·故障诊断·多特征分类预测·transformer-svm