【机器学习习题】估计一个模型在未见过的数据上的性能

您提到的不等式是统计学中的泛化误差界(generalization error bound),它用于估计一个模型在未见过的数据上的性能。这个不等式是由Hoeffding不等式和Union Bound组合而成的。在这个不等式中,我们有以下符号:

  • P[|E_in(g) - E_out(g)| > ε] :这是泛化误差超过ε的概率

  • ε :可容忍的差值。

  • M :假设模型类别的大小(例如,假设我们正在训练的模型有多少个可能的候选)。

  • N :数据集的大小。

  • δ :可容忍的BAD概率(也称为置信度)。

  • c:一个常数,通常设置为1。

您的目标是找到一个数据集的大小N,以便满足给定的ε和δ,并保证泛化误差不会超过ε。

根据不等式,我们可以设置:

P[|E_in(g) - E_out(g)| > ε] ≤ 2*M*exp(-2*ε^2*N)

然后,我们可以将这个概率与可容忍的BAD概率δ相等,以找到数据集的大小N:

2*M*exp(-2*ε^2*N) = δ

现在,您提供了ε=0.1,δ=0.05,M=100。我们可以将这些值代入上述方程,并解出N:

2*100*exp(-2*0.1^2*N) = 0.05

现在,我们来解这个方程以找到N:

exp(-2*0.1^2*N) = 0.05 / (2*100)

exp(-2*0.01*N) = 0.00025

使用自然对数的性质,我们可以继续解这个方程:

-2*0.01*N = ln(0.00025)

N = ln(0.00025) / (-2*0.01)

N ≈ 6907.76

因此,需要大约6908个数据点来满足给定的ε=0.1和δ=0.05,以确保泛化误差不会超过0.1。

请注意,这个结果是一个估计值,实际情况可能会受到数据分布和模型选择等因素的影响。此外,对于不同的问题和模型,可能需要不同的训练数据量来满足给定的泛化误差和置信度要求。

相关推荐
winner88814 分钟前
深入浅出 Beam Search:自然语言处理中的高效搜索利器
人工智能·自然语言处理·beam search
QQ_7781329746 分钟前
深度学习领域车辆识别与跟踪
深度学习·机器学习
Andy℡。7 分钟前
数值计算期末考试重点(三)(黄云清版教材)【未更完】
算法
2401_8904167110 分钟前
AI证件照制作 API 快速生成证件照
人工智能
_oP_i1 小时前
openai chatgpt原理介绍
人工智能·chatgpt
HappyAcmen3 小时前
机器算法之逻辑回归(Logistic Regression)详解
算法·机器学习·逻辑回归
get_money_4 小时前
代码随想录Day37 动态规划:完全背包理论基础,518.零钱兑换II,本周小结动态规划,377. 组合总和 Ⅳ,70. 爬楼梯(进阶版)。
java·笔记·算法·动态规划
get_money_4 小时前
代码随想录38 322. 零钱兑换,279.完全平方数,本周小结动态规划,139.单词拆分,动态规划:关于多重背包,你该了解这些!背包问题总结篇。
java·开发语言·笔记·算法·动态规划
不会玩技术的技术girl5 小时前
AI 自动化编程的现状与局限
运维·人工智能·自动化
玄明Hanko5 小时前
AI文献阅读ChatDOC 、ChatPDF 哪个好?
人工智能·chatdoc·chatpdf