【机器学习习题】估计一个模型在未见过的数据上的性能

您提到的不等式是统计学中的泛化误差界(generalization error bound),它用于估计一个模型在未见过的数据上的性能。这个不等式是由Hoeffding不等式和Union Bound组合而成的。在这个不等式中,我们有以下符号:

  • P[|E_in(g) - E_out(g)| > ε] :这是泛化误差超过ε的概率

  • ε :可容忍的差值。

  • M :假设模型类别的大小(例如,假设我们正在训练的模型有多少个可能的候选)。

  • N :数据集的大小。

  • δ :可容忍的BAD概率(也称为置信度)。

  • c:一个常数,通常设置为1。

您的目标是找到一个数据集的大小N,以便满足给定的ε和δ,并保证泛化误差不会超过ε。

根据不等式,我们可以设置:

P[|E_in(g) - E_out(g)| > ε] ≤ 2*M*exp(-2*ε^2*N)

然后,我们可以将这个概率与可容忍的BAD概率δ相等,以找到数据集的大小N:

2*M*exp(-2*ε^2*N) = δ

现在,您提供了ε=0.1,δ=0.05,M=100。我们可以将这些值代入上述方程,并解出N:

2*100*exp(-2*0.1^2*N) = 0.05

现在,我们来解这个方程以找到N:

exp(-2*0.1^2*N) = 0.05 / (2*100)

exp(-2*0.01*N) = 0.00025

使用自然对数的性质,我们可以继续解这个方程:

-2*0.01*N = ln(0.00025)

N = ln(0.00025) / (-2*0.01)

N ≈ 6907.76

因此,需要大约6908个数据点来满足给定的ε=0.1和δ=0.05,以确保泛化误差不会超过0.1。

请注意,这个结果是一个估计值,实际情况可能会受到数据分布和模型选择等因素的影响。此外,对于不同的问题和模型,可能需要不同的训练数据量来满足给定的泛化误差和置信度要求。

相关推荐
charley.layabox3 小时前
8月1日ChinaJoy酒会 | 游戏出海高端私享局 | 平台 × 发行 × 投资 × 研发精英畅饮畅聊
人工智能·游戏
DFRobot智位机器人4 小时前
AIOT开发选型:行空板 K10 与 M10 适用场景与选型深度解析
人工智能
想成为风筝6 小时前
从零开始学习深度学习—水果分类之PyQt5App
人工智能·深度学习·计算机视觉·pyqt
F_D_Z6 小时前
MMaDA:多模态大型扩散语言模型
人工智能·语言模型·自然语言处理
大知闲闲哟7 小时前
深度学习G2周:人脸图像生成(DCGAN)
人工智能·深度学习
飞哥数智坊7 小时前
Coze实战第15讲:钱都去哪儿了?Coze+飞书搭建自动记账系统
人工智能·coze
wenzhangli77 小时前
低代码引擎核心技术:OneCode常用动作事件速查手册及注解驱动开发详解
人工智能·低代码·云原生
今天背单词了吗9807 小时前
算法学习笔记:19.牛顿迭代法——从原理到实战,涵盖 LeetCode 与考研 408 例题
笔记·学习·算法·牛顿迭代法
jdlxx_dongfangxing8 小时前
进制转换算法详解及应用
算法
潘达斯奈基~8 小时前
大模型的Temperature、Top-P、Top-K、Greedy Search、Beem Search
人工智能·aigc