【机器学习习题】估计一个模型在未见过的数据上的性能

您提到的不等式是统计学中的泛化误差界(generalization error bound),它用于估计一个模型在未见过的数据上的性能。这个不等式是由Hoeffding不等式和Union Bound组合而成的。在这个不等式中,我们有以下符号:

  • P[|E_in(g) - E_out(g)| > ε] :这是泛化误差超过ε的概率

  • ε :可容忍的差值。

  • M :假设模型类别的大小(例如,假设我们正在训练的模型有多少个可能的候选)。

  • N :数据集的大小。

  • δ :可容忍的BAD概率(也称为置信度)。

  • c:一个常数,通常设置为1。

您的目标是找到一个数据集的大小N,以便满足给定的ε和δ,并保证泛化误差不会超过ε。

根据不等式,我们可以设置:

P[|E_in(g) - E_out(g)| > ε] ≤ 2*M*exp(-2*ε^2*N)

然后,我们可以将这个概率与可容忍的BAD概率δ相等,以找到数据集的大小N:

2*M*exp(-2*ε^2*N) = δ

现在,您提供了ε=0.1,δ=0.05,M=100。我们可以将这些值代入上述方程,并解出N:

2*100*exp(-2*0.1^2*N) = 0.05

现在,我们来解这个方程以找到N:

exp(-2*0.1^2*N) = 0.05 / (2*100)

exp(-2*0.01*N) = 0.00025

使用自然对数的性质,我们可以继续解这个方程:

-2*0.01*N = ln(0.00025)

N = ln(0.00025) / (-2*0.01)

N ≈ 6907.76

因此,需要大约6908个数据点来满足给定的ε=0.1和δ=0.05,以确保泛化误差不会超过0.1。

请注意,这个结果是一个估计值,实际情况可能会受到数据分布和模型选择等因素的影响。此外,对于不同的问题和模型,可能需要不同的训练数据量来满足给定的泛化误差和置信度要求。

相关推荐
pilgrim5313 分钟前
结合 Leetcode 题探究KMP算法
算法·leetcode
xier_ran20 分钟前
深度学习:Mini-Batch 梯度下降(Mini-Batch Gradient Descent)
人工智能·深度学习·batch
Microvision维视智造31 分钟前
变速箱阀芯上料易错漏?通用 2D 视觉方案高效破局,成汽车制造检测优选!
人工智能
AAA小肥杨31 分钟前
探索K8s与AI的结合:PyTorch训练任务在k8s上调度实践
人工智能·pytorch·docker·ai·云原生·kubernetes
罗义凯33 分钟前
其中包含了三种排序算法的注释版本(冒泡排序、选择排序、插入排序),但当前只实现了数组的输入和输出功能。
数据结构·c++·算法
飞哥数智坊1 小时前
TRAE Friends 落地济南!首场线下活动圆满结束
人工智能·trae·solo
m0_527653901 小时前
NVIDIA Orin NX使用Jetpack安装CUDA、cuDNN、TensorRT、VPI时的error及解决方法
linux·人工智能·jetpack·nvidia orin nx
wbzuo1 小时前
Clip:Learning Transferable Visual Models From Natural Language Supervision
论文阅读·人工智能·transformer
kevien_G11 小时前
JAVA之二叉树
数据结构·算法
带土11 小时前
2. YOLOv5 搭建一个完整的目标检测系统核心步骤
人工智能·yolo·目标检测