【机器学习习题】估计一个模型在未见过的数据上的性能

您提到的不等式是统计学中的泛化误差界(generalization error bound),它用于估计一个模型在未见过的数据上的性能。这个不等式是由Hoeffding不等式和Union Bound组合而成的。在这个不等式中,我们有以下符号:

  • P[|E_in(g) - E_out(g)| > ε] :这是泛化误差超过ε的概率

  • ε :可容忍的差值。

  • M :假设模型类别的大小(例如,假设我们正在训练的模型有多少个可能的候选)。

  • N :数据集的大小。

  • δ :可容忍的BAD概率(也称为置信度)。

  • c:一个常数,通常设置为1。

您的目标是找到一个数据集的大小N,以便满足给定的ε和δ,并保证泛化误差不会超过ε。

根据不等式,我们可以设置:

P[|E_in(g) - E_out(g)| > ε] ≤ 2*M*exp(-2*ε^2*N)

然后,我们可以将这个概率与可容忍的BAD概率δ相等,以找到数据集的大小N:

2*M*exp(-2*ε^2*N) = δ

现在,您提供了ε=0.1,δ=0.05,M=100。我们可以将这些值代入上述方程,并解出N:

2*100*exp(-2*0.1^2*N) = 0.05

现在,我们来解这个方程以找到N:

exp(-2*0.1^2*N) = 0.05 / (2*100)

exp(-2*0.01*N) = 0.00025

使用自然对数的性质,我们可以继续解这个方程:

-2*0.01*N = ln(0.00025)

N = ln(0.00025) / (-2*0.01)

N ≈ 6907.76

因此,需要大约6908个数据点来满足给定的ε=0.1和δ=0.05,以确保泛化误差不会超过0.1。

请注意,这个结果是一个估计值,实际情况可能会受到数据分布和模型选择等因素的影响。此外,对于不同的问题和模型,可能需要不同的训练数据量来满足给定的泛化误差和置信度要求。

相关推荐
美酒没故事°4 分钟前
AI中的agent、skill、mcp都是什么?
人工智能·ai
Vic1010110 分钟前
算法D1-20260212:双指针专题
java·数据结构·算法
仟濹11 分钟前
【算法打卡day7(2026-02-12 周四)算法:BFS and BFS】10__卡码网110_字符串迁移, 11_卡码网105_有向图的完全连通
算法·深度优先·dfs·bfs·宽度优先
9359611 分钟前
机考24 翻译18 单词11
c语言·数据结构·算法
后端小肥肠18 分钟前
从n8n到Claude Skills:轻松搞定小红书热门美食手账,3分钟出图,小白也能会!
人工智能·aigc·agent
之歆25 分钟前
Coze 照片知识库深度解析:当 AI 学会「看图说话」
人工智能
苡~29 分钟前
【claude skill系列 - 10】Claude_Skill全栈实战_从0到1构建个人AI助手
人工智能·ai编程·api 中转站·稳定ai编程工具
小陈phd31 分钟前
多模态大模型学习笔记(五)—— 神经网络激活函数完整指南
人工智能·笔记·神经网络·学习·自然语言处理
曦云沐33 分钟前
第四篇:LangChain 1.0 Community 生态全览:第三方集成与厂商包最佳实践
人工智能·langchain·大模型开发框架
爱思德学术40 分钟前
中国计算机学会(CCF)推荐学术会议-B(计算机体系结构/并行与分布计算/存储系统):SPAA 2026
算法