【机器学习习题】估计一个模型在未见过的数据上的性能

您提到的不等式是统计学中的泛化误差界(generalization error bound),它用于估计一个模型在未见过的数据上的性能。这个不等式是由Hoeffding不等式和Union Bound组合而成的。在这个不等式中,我们有以下符号:

  • P[|E_in(g) - E_out(g)| > ε] :这是泛化误差超过ε的概率

  • ε :可容忍的差值。

  • M :假设模型类别的大小(例如,假设我们正在训练的模型有多少个可能的候选)。

  • N :数据集的大小。

  • δ :可容忍的BAD概率(也称为置信度)。

  • c:一个常数,通常设置为1。

您的目标是找到一个数据集的大小N,以便满足给定的ε和δ,并保证泛化误差不会超过ε。

根据不等式,我们可以设置:

P[|E_in(g) - E_out(g)| > ε] ≤ 2*M*exp(-2*ε^2*N)

然后,我们可以将这个概率与可容忍的BAD概率δ相等,以找到数据集的大小N:

2*M*exp(-2*ε^2*N) = δ

现在,您提供了ε=0.1,δ=0.05,M=100。我们可以将这些值代入上述方程,并解出N:

2*100*exp(-2*0.1^2*N) = 0.05

现在,我们来解这个方程以找到N:

exp(-2*0.1^2*N) = 0.05 / (2*100)

exp(-2*0.01*N) = 0.00025

使用自然对数的性质,我们可以继续解这个方程:

-2*0.01*N = ln(0.00025)

N = ln(0.00025) / (-2*0.01)

N ≈ 6907.76

因此,需要大约6908个数据点来满足给定的ε=0.1和δ=0.05,以确保泛化误差不会超过0.1。

请注意,这个结果是一个估计值,实际情况可能会受到数据分布和模型选择等因素的影响。此外,对于不同的问题和模型,可能需要不同的训练数据量来满足给定的泛化误差和置信度要求。

相关推荐
无敌最俊朗@4 小时前
力扣hot100-206反转链表
算法·leetcode·链表
TsingtaoAI4 小时前
企业实训|自动驾驶中的图像处理与感知技术——某央企汽车集团
图像处理·人工智能·自动驾驶·集成学习
Kuo-Teng4 小时前
LeetCode 279: Perfect Squares
java·数据结构·算法·leetcode·职场和发展
王哈哈^_^4 小时前
YOLO11实例分割训练任务——从构建数据集到训练的完整教程
人工智能·深度学习·算法·yolo·目标检测·机器学习·计算机视觉
檐下翻书1735 小时前
从入门到精通:流程图制作学习路径规划
论文阅读·人工智能·学习·算法·流程图·论文笔记
CoderYanger5 小时前
B.双指针——3194. 最小元素和最大元素的最小平均值
java·开发语言·数据结构·算法·leetcode·职场和发展·1024程序员节
SalvoGao5 小时前
Python学习 | 怎么理解epoch?
数据结构·人工智能·python·深度学习·学习
搬砖者(视觉算法工程师)6 小时前
自动驾驶汽车技术的工程原理与应用
人工智能·计算机视觉·自动驾驶
CV实验室6 小时前
2025 | 哈工大&鹏城实验室等提出 Cascade HQP-DETR:仅用合成数据实现SOTA目标检测,突破虚实鸿沟!
人工智能·目标检测·计算机视觉·哈工大
aitoolhub6 小时前
培训ppt高效制作:稿定设计 + Prompt 工程 30 分钟出图指南
人工智能·prompt·aigc