《动手学深度学习 Pytorch版》 4.4 模型选择、欠拟合和过拟合

4.4.1 训练误差和泛化误差

整节理论,详见书本。

4.4.2 模型选择

整节理论,详见书本。

4.4.3 欠拟合还是过拟合

整节理论,详见书本。

4.4.4 多项回归

python 复制代码
import math
import numpy as np
import torch
from torch import nn
from d2l import torch as d2l
  1. 使用以下三阶多项式生成训练数据和测试数据的标签:
    y = 5 + 1.2 x − 3.4 x 2 2 ! + 5.6 x 3 3 ! + ϵ y=5+1.2x-3.4\frac{x^2}{2!}+5.6\frac{x^3}{3!}+\epsilon y=5+1.2x−3.42!x2+5.63!x3+ϵ

    其中噪声项 ϵ \epsilon ϵ 服从均值为 0 且标准差为 0.1 的正态分布,此外将特征值从 x i x^i xi 调整为 x i i ! \frac{x^i}{i!} i!xi 可以避免很大的 i i i 带来过大的指数值从而使梯度或损失值过大。

python 复制代码
max_degree = 20  # 多项式的最大阶数
n_train, n_test = 100, 100  # 训练和测试数据集大小
true_w = np.zeros(max_degree)  # 分配大量的空间
true_w[0:4] = np.array([5, 1.2, -3.4, 5.6])  # 真实系数

features = np.random.normal(size=(n_train + n_test, 1))  # 生成随机 x
np.random.shuffle(features)  # 打乱
poly_features = np.power(features, np.arange(max_degree).reshape(1, -1))  # 分别计算0到20次幂 此处利用了广播机制
for i in range(max_degree):  # 分别除以次数的阶乘,此处使用的 gamma(n)=(n-1)!
    poly_features[:, i] /= math.gamma(i + 1)
labels = np.dot(poly_features, true_w)  # 乘以系数
labels += np.random.normal(scale=0.1, size=labels.shape)  # 加上噪声
python 复制代码
# 查看前两个样本
true_w, features, poly_features, labels = [torch.tensor(x, dtype=
    torch.float32) for x in [true_w, features, poly_features, labels]]  # NumPy ndarray转换为tensor

features[:2], poly_features[:2, :], labels[:2]
复制代码
(tensor([[-0.1243],
         [ 1.3898]]),
 tensor([[ 1.0000e+00, -1.2432e-01,  7.7282e-03, -3.2027e-04,  9.9542e-06,
          -2.4751e-07,  5.1285e-09, -9.1085e-11,  1.4155e-12, -1.9553e-14,
           2.4310e-16, -2.7475e-18,  2.8465e-20, -2.7222e-22,  2.4174e-24,
          -2.0036e-26,  1.5568e-28, -1.1385e-30,  7.8638e-33, -5.1456e-35],
         [ 1.0000e+00,  1.3898e+00,  9.6571e-01,  4.4737e-01,  1.5543e-01,
           4.3203e-02,  1.0007e-02,  1.9867e-03,  3.4513e-04,  5.3294e-05,
           7.4066e-06,  9.3576e-07,  1.0837e-07,  1.1586e-08,  1.1501e-09,
           1.0656e-10,  9.2554e-12,  7.5663e-13,  5.8418e-14,  4.2730e-15]]),
 tensor([4.9927, 5.8647]))
  1. 对模型进行训练和测试

    分别是实现损失函数和训练函数

python 复制代码
def evaluate_loss(net, data_iter, loss):  #@save
    """评估给定数据集上模型的损失"""
    metric = d2l.Accumulator(2)  # 损失的总和,样本数量
    for X, y in data_iter:
        out = net(X)
        y = y.reshape(out.shape)
        l = loss(out, y)
        metric.add(l.sum(), l.numel())
    return metric[0] / metric[1]
python 复制代码
def train(train_features, test_features, train_labels, test_labels,
          num_epochs=400):
    loss = nn.MSELoss(reduction='none')
    input_shape = train_features.shape[-1]
    # 不设置偏置,因为我们已经在多项式中实现了它
    net = nn.Sequential(nn.Linear(input_shape, 1, bias=False))
    batch_size = min(10, train_labels.shape[0])
    train_iter = d2l.load_array((train_features, train_labels.reshape(-1,1)),
                                batch_size)
    test_iter = d2l.load_array((test_features, test_labels.reshape(-1,1)),
                               batch_size, is_train=False)
    trainer = torch.optim.SGD(net.parameters(), lr=0.01)
    animator = d2l.Animator(xlabel='epoch', ylabel='loss', yscale='log',
                            xlim=[1, num_epochs], ylim=[1e-3, 1e2],
                            legend=['train', 'test'])
    for epoch in range(num_epochs):
        d2l.train_epoch_ch3(net, train_iter, loss, trainer)
        if epoch == 0 or (epoch + 1) % 20 == 0:
            animator.add(epoch + 1, (evaluate_loss(net, train_iter, loss),
                                     evaluate_loss(net, test_iter, loss)))
    print('weight:', net[0].weight.data.numpy())
  1. 三阶多项式函数拟合(正常)
python 复制代码
# 从多项式特征中选择前 4 个维度,即 1, x, x^2/2!, x^3/3!
train(poly_features[:n_train, :4], poly_features[n_train:, :4],
      labels[:n_train], labels[n_train:])
复制代码
weight: [[ 4.9966974  1.2050456 -3.393899   5.60854  ]]
  1. 线性函数拟合(欠拟合)
python 复制代码
# 从多项式特征中选择前 2 个维度,即 1 和 x
train(poly_features[:n_train, :2], poly_features[n_train:, :2],
      labels[:n_train], labels[n_train:])
复制代码
weight: [[3.040382  5.0033937]]
  1. 高阶多项式函数拟合(过拟合)
python 复制代码
# 从多项式特征中选取所有维度
train(poly_features[:n_train, :], poly_features[n_train:, :],
      labels[:n_train], labels[n_train:], num_epochs=1500)
复制代码
weight: [[ 5.019969    1.2532085  -3.4963152   5.322493    0.14574984  0.7863229
   0.42101192  0.1502814   0.31017718 -0.07281512 -0.0655788   0.14933251
  -0.12562694 -0.18436337 -0.20441814 -0.2126619   0.157519   -0.16071859
   0.02987491 -0.14533804]]

ps:好怪,随机出来的数据有时候不但不过拟合,甚至测试损失比训练损失都低。

练习

(1)多项式回归问题可以准确的解出吗?(提示:使用线性代数。)

令 y ^ = X W \hat{\boldsymbol{y}}=\boldsymbol{XW} y^=XW,其中 X = 1 , x , x 2 2 ! , x 3 3 ! \boldsymbol{X}={1,\boldsymbol{x},\frac{\boldsymbol{x}^2}{2!},\frac{\boldsymbol{x}^3}{3!}} X=1,x,2!x2,3!x3

此问题为求 W \boldsymbol{W} W 的解析解,使得 L ( X , W ) = 1 2 ∣ ∣ y − y ^ ∣ ∣ 2 L(\boldsymbol{X},\boldsymbol{W})=\frac{1}{2}||\boldsymbol{y}-\hat{\boldsymbol{y}}||_2 L(X,W)=21∣∣y−y^∣∣2 最小

令损失式对 W \boldsymbol{W} W 的偏导为 0 即可。

具体求解过程可见 3.1.练习(2)

可得:

W = ( X T X ) − 1 X T y \boldsymbol{W}=(\boldsymbol{X}^T\boldsymbol{X})^{-1}X^T\boldsymbol{y} W=(XTX)−1XTy


(2)考虑多项式的模型选择。

复制代码
a. 绘制训练损失与模型复杂度(多项式的阶数)的关系图。从关系图中能观察到什么?需要多少阶的多项式才能将训练损失减小到 0?

b. 在这种情况下绘制测试的损失图。

c. 生成同样的图,作为数据量函数。

不会...


(3)如果不对多项式特征 x i x^i xi 进行标准化 ( 1 / i ! ) (1/i!) (1/i!),会出现什么问题?能用其他方法解决这个问题吗?

如上所述,将特征值从 x i x^i xi 调整为 x i i ! \frac{x^i}{i!} i!xi 是为了避免很大的 i i i 带来过大的指数值从而使梯度或损失值过大。

取对数之类的应该也可以。


(4)泛化误差可能为零吗?

应该是不可能的,毕竟还有噪声项,不可能完全拟合。

相关推荐
Codebee2 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º2 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys2 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56782 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子3 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能3 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_160144873 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能
Howie Zphile3 小时前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算
人工不智能5773 小时前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert
盟接之桥3 小时前
盟接之桥说制造:引流品 × 利润品,全球电商平台高效产品组合策略(供讨论)
大数据·linux·服务器·网络·人工智能·制造