《动手学深度学习 Pytorch版》 4.4 模型选择、欠拟合和过拟合

4.4.1 训练误差和泛化误差

整节理论,详见书本。

4.4.2 模型选择

整节理论,详见书本。

4.4.3 欠拟合还是过拟合

整节理论,详见书本。

4.4.4 多项回归

python 复制代码
import math
import numpy as np
import torch
from torch import nn
from d2l import torch as d2l
  1. 使用以下三阶多项式生成训练数据和测试数据的标签:
    y = 5 + 1.2 x − 3.4 x 2 2 ! + 5.6 x 3 3 ! + ϵ y=5+1.2x-3.4\frac{x^2}{2!}+5.6\frac{x^3}{3!}+\epsilon y=5+1.2x−3.42!x2+5.63!x3+ϵ

    其中噪声项 ϵ \epsilon ϵ 服从均值为 0 且标准差为 0.1 的正态分布,此外将特征值从 x i x^i xi 调整为 x i i ! \frac{x^i}{i!} i!xi 可以避免很大的 i i i 带来过大的指数值从而使梯度或损失值过大。

python 复制代码
max_degree = 20  # 多项式的最大阶数
n_train, n_test = 100, 100  # 训练和测试数据集大小
true_w = np.zeros(max_degree)  # 分配大量的空间
true_w[0:4] = np.array([5, 1.2, -3.4, 5.6])  # 真实系数

features = np.random.normal(size=(n_train + n_test, 1))  # 生成随机 x
np.random.shuffle(features)  # 打乱
poly_features = np.power(features, np.arange(max_degree).reshape(1, -1))  # 分别计算0到20次幂 此处利用了广播机制
for i in range(max_degree):  # 分别除以次数的阶乘,此处使用的 gamma(n)=(n-1)!
    poly_features[:, i] /= math.gamma(i + 1)
labels = np.dot(poly_features, true_w)  # 乘以系数
labels += np.random.normal(scale=0.1, size=labels.shape)  # 加上噪声
python 复制代码
# 查看前两个样本
true_w, features, poly_features, labels = [torch.tensor(x, dtype=
    torch.float32) for x in [true_w, features, poly_features, labels]]  # NumPy ndarray转换为tensor

features[:2], poly_features[:2, :], labels[:2]
(tensor([[-0.1243],
         [ 1.3898]]),
 tensor([[ 1.0000e+00, -1.2432e-01,  7.7282e-03, -3.2027e-04,  9.9542e-06,
          -2.4751e-07,  5.1285e-09, -9.1085e-11,  1.4155e-12, -1.9553e-14,
           2.4310e-16, -2.7475e-18,  2.8465e-20, -2.7222e-22,  2.4174e-24,
          -2.0036e-26,  1.5568e-28, -1.1385e-30,  7.8638e-33, -5.1456e-35],
         [ 1.0000e+00,  1.3898e+00,  9.6571e-01,  4.4737e-01,  1.5543e-01,
           4.3203e-02,  1.0007e-02,  1.9867e-03,  3.4513e-04,  5.3294e-05,
           7.4066e-06,  9.3576e-07,  1.0837e-07,  1.1586e-08,  1.1501e-09,
           1.0656e-10,  9.2554e-12,  7.5663e-13,  5.8418e-14,  4.2730e-15]]),
 tensor([4.9927, 5.8647]))
  1. 对模型进行训练和测试

    分别是实现损失函数和训练函数

python 复制代码
def evaluate_loss(net, data_iter, loss):  #@save
    """评估给定数据集上模型的损失"""
    metric = d2l.Accumulator(2)  # 损失的总和,样本数量
    for X, y in data_iter:
        out = net(X)
        y = y.reshape(out.shape)
        l = loss(out, y)
        metric.add(l.sum(), l.numel())
    return metric[0] / metric[1]
python 复制代码
def train(train_features, test_features, train_labels, test_labels,
          num_epochs=400):
    loss = nn.MSELoss(reduction='none')
    input_shape = train_features.shape[-1]
    # 不设置偏置,因为我们已经在多项式中实现了它
    net = nn.Sequential(nn.Linear(input_shape, 1, bias=False))
    batch_size = min(10, train_labels.shape[0])
    train_iter = d2l.load_array((train_features, train_labels.reshape(-1,1)),
                                batch_size)
    test_iter = d2l.load_array((test_features, test_labels.reshape(-1,1)),
                               batch_size, is_train=False)
    trainer = torch.optim.SGD(net.parameters(), lr=0.01)
    animator = d2l.Animator(xlabel='epoch', ylabel='loss', yscale='log',
                            xlim=[1, num_epochs], ylim=[1e-3, 1e2],
                            legend=['train', 'test'])
    for epoch in range(num_epochs):
        d2l.train_epoch_ch3(net, train_iter, loss, trainer)
        if epoch == 0 or (epoch + 1) % 20 == 0:
            animator.add(epoch + 1, (evaluate_loss(net, train_iter, loss),
                                     evaluate_loss(net, test_iter, loss)))
    print('weight:', net[0].weight.data.numpy())
  1. 三阶多项式函数拟合(正常)
python 复制代码
# 从多项式特征中选择前 4 个维度,即 1, x, x^2/2!, x^3/3!
train(poly_features[:n_train, :4], poly_features[n_train:, :4],
      labels[:n_train], labels[n_train:])
weight: [[ 4.9966974  1.2050456 -3.393899   5.60854  ]]
  1. 线性函数拟合(欠拟合)
python 复制代码
# 从多项式特征中选择前 2 个维度,即 1 和 x
train(poly_features[:n_train, :2], poly_features[n_train:, :2],
      labels[:n_train], labels[n_train:])
weight: [[3.040382  5.0033937]]
  1. 高阶多项式函数拟合(过拟合)
python 复制代码
# 从多项式特征中选取所有维度
train(poly_features[:n_train, :], poly_features[n_train:, :],
      labels[:n_train], labels[n_train:], num_epochs=1500)
weight: [[ 5.019969    1.2532085  -3.4963152   5.322493    0.14574984  0.7863229
   0.42101192  0.1502814   0.31017718 -0.07281512 -0.0655788   0.14933251
  -0.12562694 -0.18436337 -0.20441814 -0.2126619   0.157519   -0.16071859
   0.02987491 -0.14533804]]

ps:好怪,随机出来的数据有时候不但不过拟合,甚至测试损失比训练损失都低。

练习

(1)多项式回归问题可以准确的解出吗?(提示:使用线性代数。)

令 y ^ = X W \hat{\boldsymbol{y}}=\boldsymbol{XW} y^=XW,其中 X = 1 , x , x 2 2 ! , x 3 3 ! \boldsymbol{X}={1,\boldsymbol{x},\frac{\boldsymbol{x}^2}{2!},\frac{\boldsymbol{x}^3}{3!}} X=1,x,2!x2,3!x3

此问题为求 W \boldsymbol{W} W 的解析解,使得 L ( X , W ) = 1 2 ∣ ∣ y − y ^ ∣ ∣ 2 L(\boldsymbol{X},\boldsymbol{W})=\frac{1}{2}||\boldsymbol{y}-\hat{\boldsymbol{y}}||_2 L(X,W)=21∣∣y−y^∣∣2 最小

令损失式对 W \boldsymbol{W} W 的偏导为 0 即可。

具体求解过程可见 3.1.练习(2)

可得:

W = ( X T X ) − 1 X T y \boldsymbol{W}=(\boldsymbol{X}^T\boldsymbol{X})^{-1}X^T\boldsymbol{y} W=(XTX)−1XTy


(2)考虑多项式的模型选择。

a. 绘制训练损失与模型复杂度(多项式的阶数)的关系图。从关系图中能观察到什么?需要多少阶的多项式才能将训练损失减小到 0?

b. 在这种情况下绘制测试的损失图。

c. 生成同样的图,作为数据量函数。

不会...


(3)如果不对多项式特征 x i x^i xi 进行标准化 ( 1 / i ! ) (1/i!) (1/i!),会出现什么问题?能用其他方法解决这个问题吗?

如上所述,将特征值从 x i x^i xi 调整为 x i i ! \frac{x^i}{i!} i!xi 是为了避免很大的 i i i 带来过大的指数值从而使梯度或损失值过大。

取对数之类的应该也可以。


(4)泛化误差可能为零吗?

应该是不可能的,毕竟还有噪声项,不可能完全拟合。

相关推荐
人工智能技术咨询.22 分钟前
张雪峰谈人工智能技术应用专业的就业前景!
人工智能·学习·计算机视觉·语言模型
sp_fyf_20241 小时前
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-05
人工智能·深度学习·神经网络·算法·机器学习·语言模型·自然语言处理
EterNity_TiMe_1 小时前
【机器学习】智驭未来:探索机器学习在食品生产中的革新之路
人工智能·python·机器学习·性能优化·学习方法
知来者逆1 小时前
探索大型语言模型在文化常识方面的理解能力与局限性
人工智能·gpt·深度学习·语言模型·自然语言处理·chatgpt·llm
Python极客之家1 小时前
基于深度学习的乳腺癌分类识别与诊断系统
人工智能·深度学习·分类
mftang2 小时前
TMR传感器的实现原理和特性介绍
人工智能
吃什么芹菜卷2 小时前
深度学习:词嵌入embedding和Word2Vec
人工智能·算法·机器学习
chnyi6_ya2 小时前
论文笔记:Online Class-Incremental Continual Learning with Adversarial Shapley Value
论文阅读·人工智能
中杯可乐多加冰2 小时前
【AI驱动TDSQL-C Serverless数据库技术实战】 AI电商数据分析系统——探索Text2SQL下AI驱动代码进行实际业务
c语言·人工智能·serverless·tdsql·腾讯云数据库
萱仔学习自我记录4 小时前
PEFT库和transformers库在NLP大模型中的使用和常用方法详解
人工智能·机器学习