《动手学深度学习 Pytorch版》 4.4 模型选择、欠拟合和过拟合

4.4.1 训练误差和泛化误差

整节理论,详见书本。

4.4.2 模型选择

整节理论,详见书本。

4.4.3 欠拟合还是过拟合

整节理论,详见书本。

4.4.4 多项回归

python 复制代码
import math
import numpy as np
import torch
from torch import nn
from d2l import torch as d2l
  1. 使用以下三阶多项式生成训练数据和测试数据的标签:
    y = 5 + 1.2 x − 3.4 x 2 2 ! + 5.6 x 3 3 ! + ϵ y=5+1.2x-3.4\frac{x^2}{2!}+5.6\frac{x^3}{3!}+\epsilon y=5+1.2x−3.42!x2+5.63!x3+ϵ

    其中噪声项 ϵ \epsilon ϵ 服从均值为 0 且标准差为 0.1 的正态分布,此外将特征值从 x i x^i xi 调整为 x i i ! \frac{x^i}{i!} i!xi 可以避免很大的 i i i 带来过大的指数值从而使梯度或损失值过大。

python 复制代码
max_degree = 20  # 多项式的最大阶数
n_train, n_test = 100, 100  # 训练和测试数据集大小
true_w = np.zeros(max_degree)  # 分配大量的空间
true_w[0:4] = np.array([5, 1.2, -3.4, 5.6])  # 真实系数

features = np.random.normal(size=(n_train + n_test, 1))  # 生成随机 x
np.random.shuffle(features)  # 打乱
poly_features = np.power(features, np.arange(max_degree).reshape(1, -1))  # 分别计算0到20次幂 此处利用了广播机制
for i in range(max_degree):  # 分别除以次数的阶乘,此处使用的 gamma(n)=(n-1)!
    poly_features[:, i] /= math.gamma(i + 1)
labels = np.dot(poly_features, true_w)  # 乘以系数
labels += np.random.normal(scale=0.1, size=labels.shape)  # 加上噪声
python 复制代码
# 查看前两个样本
true_w, features, poly_features, labels = [torch.tensor(x, dtype=
    torch.float32) for x in [true_w, features, poly_features, labels]]  # NumPy ndarray转换为tensor

features[:2], poly_features[:2, :], labels[:2]
复制代码
(tensor([[-0.1243],
         [ 1.3898]]),
 tensor([[ 1.0000e+00, -1.2432e-01,  7.7282e-03, -3.2027e-04,  9.9542e-06,
          -2.4751e-07,  5.1285e-09, -9.1085e-11,  1.4155e-12, -1.9553e-14,
           2.4310e-16, -2.7475e-18,  2.8465e-20, -2.7222e-22,  2.4174e-24,
          -2.0036e-26,  1.5568e-28, -1.1385e-30,  7.8638e-33, -5.1456e-35],
         [ 1.0000e+00,  1.3898e+00,  9.6571e-01,  4.4737e-01,  1.5543e-01,
           4.3203e-02,  1.0007e-02,  1.9867e-03,  3.4513e-04,  5.3294e-05,
           7.4066e-06,  9.3576e-07,  1.0837e-07,  1.1586e-08,  1.1501e-09,
           1.0656e-10,  9.2554e-12,  7.5663e-13,  5.8418e-14,  4.2730e-15]]),
 tensor([4.9927, 5.8647]))
  1. 对模型进行训练和测试

    分别是实现损失函数和训练函数

python 复制代码
def evaluate_loss(net, data_iter, loss):  #@save
    """评估给定数据集上模型的损失"""
    metric = d2l.Accumulator(2)  # 损失的总和,样本数量
    for X, y in data_iter:
        out = net(X)
        y = y.reshape(out.shape)
        l = loss(out, y)
        metric.add(l.sum(), l.numel())
    return metric[0] / metric[1]
python 复制代码
def train(train_features, test_features, train_labels, test_labels,
          num_epochs=400):
    loss = nn.MSELoss(reduction='none')
    input_shape = train_features.shape[-1]
    # 不设置偏置,因为我们已经在多项式中实现了它
    net = nn.Sequential(nn.Linear(input_shape, 1, bias=False))
    batch_size = min(10, train_labels.shape[0])
    train_iter = d2l.load_array((train_features, train_labels.reshape(-1,1)),
                                batch_size)
    test_iter = d2l.load_array((test_features, test_labels.reshape(-1,1)),
                               batch_size, is_train=False)
    trainer = torch.optim.SGD(net.parameters(), lr=0.01)
    animator = d2l.Animator(xlabel='epoch', ylabel='loss', yscale='log',
                            xlim=[1, num_epochs], ylim=[1e-3, 1e2],
                            legend=['train', 'test'])
    for epoch in range(num_epochs):
        d2l.train_epoch_ch3(net, train_iter, loss, trainer)
        if epoch == 0 or (epoch + 1) % 20 == 0:
            animator.add(epoch + 1, (evaluate_loss(net, train_iter, loss),
                                     evaluate_loss(net, test_iter, loss)))
    print('weight:', net[0].weight.data.numpy())
  1. 三阶多项式函数拟合(正常)
python 复制代码
# 从多项式特征中选择前 4 个维度,即 1, x, x^2/2!, x^3/3!
train(poly_features[:n_train, :4], poly_features[n_train:, :4],
      labels[:n_train], labels[n_train:])
复制代码
weight: [[ 4.9966974  1.2050456 -3.393899   5.60854  ]]
  1. 线性函数拟合(欠拟合)
python 复制代码
# 从多项式特征中选择前 2 个维度,即 1 和 x
train(poly_features[:n_train, :2], poly_features[n_train:, :2],
      labels[:n_train], labels[n_train:])
复制代码
weight: [[3.040382  5.0033937]]
  1. 高阶多项式函数拟合(过拟合)
python 复制代码
# 从多项式特征中选取所有维度
train(poly_features[:n_train, :], poly_features[n_train:, :],
      labels[:n_train], labels[n_train:], num_epochs=1500)
复制代码
weight: [[ 5.019969    1.2532085  -3.4963152   5.322493    0.14574984  0.7863229
   0.42101192  0.1502814   0.31017718 -0.07281512 -0.0655788   0.14933251
  -0.12562694 -0.18436337 -0.20441814 -0.2126619   0.157519   -0.16071859
   0.02987491 -0.14533804]]

ps:好怪,随机出来的数据有时候不但不过拟合,甚至测试损失比训练损失都低。

练习

(1)多项式回归问题可以准确的解出吗?(提示:使用线性代数。)

令 y ^ = X W \hat{\boldsymbol{y}}=\boldsymbol{XW} y^=XW,其中 X = 1 , x , x 2 2 ! , x 3 3 ! \boldsymbol{X}={1,\boldsymbol{x},\frac{\boldsymbol{x}^2}{2!},\frac{\boldsymbol{x}^3}{3!}} X=1,x,2!x2,3!x3

此问题为求 W \boldsymbol{W} W 的解析解,使得 L ( X , W ) = 1 2 ∣ ∣ y − y ^ ∣ ∣ 2 L(\boldsymbol{X},\boldsymbol{W})=\frac{1}{2}||\boldsymbol{y}-\hat{\boldsymbol{y}}||_2 L(X,W)=21∣∣y−y^∣∣2 最小

令损失式对 W \boldsymbol{W} W 的偏导为 0 即可。

具体求解过程可见 3.1.练习(2)

可得:

W = ( X T X ) − 1 X T y \boldsymbol{W}=(\boldsymbol{X}^T\boldsymbol{X})^{-1}X^T\boldsymbol{y} W=(XTX)−1XTy


(2)考虑多项式的模型选择。

复制代码
a. 绘制训练损失与模型复杂度(多项式的阶数)的关系图。从关系图中能观察到什么?需要多少阶的多项式才能将训练损失减小到 0?

b. 在这种情况下绘制测试的损失图。

c. 生成同样的图,作为数据量函数。

不会...


(3)如果不对多项式特征 x i x^i xi 进行标准化 ( 1 / i ! ) (1/i!) (1/i!),会出现什么问题?能用其他方法解决这个问题吗?

如上所述,将特征值从 x i x^i xi 调整为 x i i ! \frac{x^i}{i!} i!xi 是为了避免很大的 i i i 带来过大的指数值从而使梯度或损失值过大。

取对数之类的应该也可以。


(4)泛化误差可能为零吗?

应该是不可能的,毕竟还有噪声项,不可能完全拟合。

相关推荐
予枫的编程笔记1 小时前
【Java进阶】掌握布隆过滤器,守住高并发系统的第一道防线
人工智能
过期的秋刀鱼!1 小时前
机器学习-过拟合&欠拟合问题
人工智能·机器学习
万事可爱^1 小时前
LangChain v1.0学习笔记(4)—— 核心组件Models
人工智能·笔记·学习·langchain·大模型
Frdbio1 小时前
环腺苷酸(cAMP)ELISA检测试剂盒
linux·人工智能·python
dazzle1 小时前
计算机视觉处理(OpenCV基础教学(二十二):霍夫变换技术详解)
人工智能·opencv·计算机视觉
狗狗学不会1 小时前
RK3588 极致性能:使用 Pybind11 封装 MPP 实现 Python 端 8 路视频硬件解码
人工智能·python·音视频
Aevget1 小时前
Kendo UI for jQuery 2025 Q4新版亮点 - AI 助手持续加持,主力开发更智能
人工智能·ui·jquery·界面控件·kendo ui
北京耐用通信1 小时前
耐达讯自动化CANopen转Profibus网关在矿山机械RFID读写器应用中的技术分析
人工智能·科技·物联网·自动化·信息与通信
飞睿科技1 小时前
UWB技术在机器人领域的创新应用与前景
网络·人工智能·机器人·定位技术·uwb技术
空山新雨后、1 小时前
RAG:搜索引擎与大模型的完美融合
人工智能·搜索引擎·rag