注意力机制讲解与代码解析

一、SEBlock(通道注意力机制)

先在H*W维度进行压缩,全局平均池化将每个通道平均为一个值。

(B, C, H, W)---- (B, C, 1, 1)

利用各channel维度的相关性计算权重

(B, C, 1, 1) --- (B, C//K, 1, 1) --- (B, C, 1, 1) --- sigmoid

与原特征相乘得到加权后的。

python 复制代码
import torch
import torch.nn as nn

class SELayer(nn.Module):
    def __init__(self, channel, reduction = 4):
        super(SELayer, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1) //自适应全局池化,只需要给出池化后特征图大小
        self.fc1 = nn.Sequential(
            nn.Conv2d(channel, channel//reduction, 1, bias = False),
            nn.ReLu(implace = True),
            nn.Conv2d(channel//reduction, channel, 1, bias = False),
            nn.sigmoid()
        )
        
    def forward(self, x):
        y = self.avg_pool(x)
        y_out = self.fc1(y)
        return x * y

二、CBAM(通道注意力+空间注意力机制)

CBAM里面既有通道注意力机制,也有空间注意力机制。

通道注意力同SE的大致相同,但额外加入了全局最大池化与全局平均池化并行。

空间注意力机制:先在channel维度进行最大池化和均值池化,然后在channel维度合并,MLP进行特征交融。最终和原始特征相乘。

python 复制代码
import torch
import torch.nn as nn

class ChannelAttention(nn.Module):
    def __init__(self, channel, rate = 4):
        super(ChannelAttention, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.max_pool = nn.AdaptiveMaxPool2d(1)
        self.fc1 = nn.Sequential(
            nn.Conv2d(channel, channel//rate, 1, bias = False)
            nn.ReLu(implace = True)
            nn.Conv2d(channel//rate, channel, 1, bias = False)            
        )
        self.sig = nn.sigmoid()
    def forward(self, x):
        avg = sefl.avg_pool(x)
        avg_feature = self.fc1(avg)
        
        max = self.max_pool(x)
        max_feature = self.fc1(max)
        
        out = max_feature + avg_feature
        out = self.sig(out)
        return x * out
        
python 复制代码
import torch
import torch.nn as nn

class SpatialAttention(nn.Module):
    def __init__(self):
        super(SpatialAttention, self).__init__()
        //(B,C,H,W)---(B,1,H,W)---(B,2,H,W)---(B,1,H,W)
        self.conv1 = nn.Conv2d(2, 1, kernel_size = 3, padding = 1, bias = False)
        self.sigmoid = nn.sigmoid()

    def forward(self, x):
        mean_f = torch.mean(x, dim = 1, keepdim = True)
        max_f = torch.max(x, dim = 1, keepdim = True)
        cat = torch.cat([mean_f, max_f], dim = 1)
        out = self.conv1(cat)
        return x*self.sigmod(out)

三、transformer里的注意力机制

Scaled Dot-Product Attention

该注意力机制的输入是QKV。

1.先Q,K相乘。

2.scale

3.softmax

4.求output

python 复制代码
import torch
import torch.nn as nn

class ScaledDotProductAttention(nn.Module):
    def __init__(self, scale):
        super(ScaledDotProductAttention, self)
        self.scale = scale
        self.softmax = nn.softmax(dim = 2)
    
    def forward(self, q, k, v):
        u = torch.bmm(q, k.transpose(1, 2))
        u = u / scale
        attn = self.softmax(u)
        output = torch.bmm(attn, v)
        return output

scale = np.power(d_k, 0.5)  //缩放系数为K维度的根号。
//Q  (B, n_q, d_q) , K (B, n_k, d_k)  V (B, n_v, d_v),Q与K的特征维度一定要一样。KV的个数一定要一样。

MultiHeadAttention

将QKVchannel维度转换为n*C的形式,相当于分成n份,分别做注意力机制。

1.QKV单头变多头 channel ----- n * new_channel通过linear变换,然后把head和batch先合并

2.求单头注意力机制输出

3.维度拆分 将最终的head和channel合并。

4.linear得到最终输出维度

python 复制代码
import torch
import torch.nn as nn

class MultiHeadAttention(nn.Module):
    def __init__(self, n_head, d_k, d_k_, d_v, d_v_, d_o):
        super(MultiHeadAttention, self)
        self.n_head = n_head
        self.d_k = d_k
        self.d_v = d_v

        self.fc_k = nn.Linear(d_k_, n_head * d_k)
        self.fc_v = nn.Linear(d_v_, n_head * d_v)
        self.fc_q = nn.Linear(d_k_, n_head * d_k)
        self.attention = ScaledDotProductAttention(scale=np.power(d_k, 0.5))
        self.fc_o = nn.Linear(n_head * d_v, d_0)
    
    def forward(self, q, k, v):
        batch, n_q, d_q_ = q.size()
        batch, n_k, d_k_ = k.size()
        batch, n_v, d_v_ = v.size()
        
        q = self.fc_q(q)
        k = self.fc_k(k)
        v = self.fc_v(v)
        
        q = q.view(batch, n_q, n_head, d_q).permute(2, 0, 1, 3).contiguous().view(-1, n_q, d_q)
        k = k.view(batch, n_k, n_head, d_k).permute(2, 0, 1, 3).contiguous().view(-1, n_k, d_k)
        v = v.view(batch, n_v, n_head, d_v).permute(2, 0, 1, 3).contiguous().view(-1. n_v, d_v)    
        output = self.attention(q, k, v)
        output = output.view(n_head, batch, n_q, d_v).permute(1, 2, 0, 3).contiguous().view(batch, n_q, -1)
        output = self.fc_0(output)
        return output
相关推荐
飞哥数智坊3 小时前
AI 编程一年多,我终于明白:比技巧更重要的,是熟练度
人工智能·ai编程
新智元3 小时前
收手吧 GPT-5-Codex,外面全是 AI 编程智能体!
人工智能·openai
IT_陈寒3 小时前
Java 性能优化:5个被低估的JVM参数让你的应用吞吐量提升50%
前端·人工智能·后端
阿里云云原生4 小时前
阿里云基础设施 AI Tech Day AI 原生,智构未来——AI 原生架构与企业实践专场
人工智能
Memene摸鱼日报5 小时前
「Memene 摸鱼日报 2025.9.16」OpenAI 推出 GPT-5-Codex 编程模型,xAI 发布 Grok 4 Fast
人工智能·aigc
xiaohouzi1122335 小时前
OpenCV的cv2.VideoCapture如何加GStreamer后端
人工智能·opencv·计算机视觉
用户125205597085 小时前
解决Stable Diffusion WebUI训练嵌入式模型报错问题
人工智能
Juchecar5 小时前
一文讲清 nn.LayerNorm 层归一化
人工智能
martinzh5 小时前
RAG系统大脑调教指南:模型选择、提示设计与质量控保一本通
人工智能
小关会打代码5 小时前
计算机视觉案例分享之答题卡识别
人工智能·计算机视觉