目标检测前言,RCNN,Fast RCNN,Faster RCNN

一、RCNN:

找到概率最高的目标之后,与其他目标进行IOU交并比计算,若高于一定值,则说明这两张图片预测的是同一个目标,则把概率低的目标删掉

二、Fast RCNN

因为是直接得到特征图之后进行映射,所以不限制输入图像尺寸

Gx,Gy是调整中心点,Dx(P)是回归参数,exp就是e的多少次方

三、Faster RCNN

从提取到的feature map上,每个anchor生成2个概率,一个背景,一个目标。

256-d(一维向量)来历,指的是特征深度,这里使用ZF网络,如果VGG肯定就是512了。

感受野=(输出尺寸-1)*stride+kernel_size

再采用:

四、FPN结构(第四张图)

P2-P5如何分得anchor的计算方式

相关推荐
fakaifa3 分钟前
【最新版】CRMEB Pro版v3.4系统源码全开源+PC端+uniapp前端+搭建教程
人工智能·小程序·uni-app·php·crmeb·源码下载·crmebpro
TuringAcademy4 小时前
AAAI爆款:目标检测新范式,模块化设计封神之作
论文阅读·人工智能·目标检测·论文笔记
The Open Group7 小时前
英特尔公司Darren Pulsipher 博士:以架构之力推动政府数字化转型
大数据·人工智能·架构
Ronin-Lotus7 小时前
深度学习篇---卷积核的权重
人工智能·深度学习
.银河系.7 小时前
8.18 机器学习-决策树(1)
人工智能·决策树·机器学习
敬往事一杯酒哈7 小时前
第7节 神经网络
人工智能·深度学习·神经网络
三掌柜6667 小时前
NVIDIA 技术沙龙探秘:聚焦 Physical AI 专场前沿技术
大数据·人工智能
2502_927161287 小时前
DAY 42 Grad-CAM与Hook函数
人工智能
Hello123网站8 小时前
Flowith-节点式GPT-4 驱动的AI生产力工具
人工智能·ai工具
yzx9910138 小时前
Yolov模型的演变
人工智能·算法·yolo