目标检测前言,RCNN,Fast RCNN,Faster RCNN

一、RCNN:

找到概率最高的目标之后,与其他目标进行IOU交并比计算,若高于一定值,则说明这两张图片预测的是同一个目标,则把概率低的目标删掉

二、Fast RCNN

因为是直接得到特征图之后进行映射,所以不限制输入图像尺寸

Gx,Gy是调整中心点,Dx(P)是回归参数,exp就是e的多少次方

三、Faster RCNN

从提取到的feature map上,每个anchor生成2个概率,一个背景,一个目标。

256-d(一维向量)来历,指的是特征深度,这里使用ZF网络,如果VGG肯定就是512了。

感受野=(输出尺寸-1)*stride+kernel_size

再采用:

四、FPN结构(第四张图)

P2-P5如何分得anchor的计算方式

相关推荐
Data_agent7 分钟前
如何评估 CNN 模型在验证码识别任务中的性能?
人工智能·机器学习·cnn
Yan-英杰15 分钟前
2025 AI数据准备:EasyLink让多模态非结构化数据处理变简单
人工智能·深度学习·神经网络·机器学习·ai·大模型
威风的虫34 分钟前
RAG 系统的经典工作流程
人工智能·python·rag
sunny066043 分钟前
Triton Kernel概述
人工智能
棒棒的皮皮1 小时前
【深度学习】YOLO-Python基础认知与算法演进
python·深度学习·yolo·计算机视觉
aiguangyuan1 小时前
机器学习入门
人工智能·python·机器学习
沃达德软件1 小时前
侦查实战中心大数据应用
大数据·人工智能·计算机视觉·数据挖掘·音视频
All The Way North-1 小时前
CNN入门前置知识:图像类型全解析(二值/灰度/索引/RGB)与Matplotlib可视化实战
计算机视觉·cnn入门·图像处理必备知识·matplotlib处理图像
aircrushin1 小时前
打造智能财务分析Agent:Claude Agent SDK完整实战案例
人工智能
共绩算力1 小时前
统一多模态基础模型:发展、架构与挑战的全面综述
人工智能·架构·共绩算力