李宏毅hw-6利用GAN生成动漫图像

一、查漏补缺、熟能生巧:

1.什么是转置卷积convTranspose、以及这种转置卷积怎么使用:

(1)具体的原理直接看李沐老师的那个演示,非常清晰:

47 转置卷积【动手学深度学习v2】_哔哩哔哩_bilibili

(2)对于这个代码

复制代码
 def dconv_bn_relu(self, in_dim, out_dim):
        return nn.Sequential(
            nn.ConvTranspose2d(in_dim, out_dim, kernel_size=5, stride=2,
                               padding=2, output_padding=1, bias=False),        #double height and width
            nn.BatchNorm2d(out_dim),
            nn.ReLU(True)
        )

来自GPT的说法:

2.关于weight_init和self.apply()
3.关于G(z_samples)部分的一个不理解的地方:

二、DCGAN , WGAN ,WGAN_GP (三种的5个epoch的效果对比):

1.DCGAN版本:一般般,直接用助教的sample_code即可,
2.对于WGAN的代码:

也就是在DCGAN中进行这种修改就好了

效果:

3.采用WAGN-GP:

需要做的修改:

PyTorch-GAN/implementations/wgan_gp/wgan_gp.py at master · eriklindernoren/PyTorch-GAN (github.com)

主要是写一个函数,然后把weight_clam那个for循环注释掉,其他的就按照助教给的注释来就好了

复制代码
def compute_gradient_penalty(self,D, real_samples, fake_samples):    
        
        Tensor = torch.cuda.FloatTensor  #if cuda else torch.FloatTensor
        """
        #这里需要参考那个link引入gradient penalty function
        Implement gradient penalty function
        """
        """Calculates the gradient penalty loss for WGAN GP"""
        # Random weight term for interpolation between real and fake samples
        alpha = Tensor(np.random.random((real_samples.size(0), 1, 1, 1)))
        # Get random interpolation between real and fake samples
        interpolates = (alpha * real_samples + ((1 - alpha) * fake_samples)).requires_grad_(True)
        d_interpolates = D(interpolates)
        
        
        
        fake = Variable(Tensor(d_interpolates.shape).fill_(1.0), requires_grad=False)

        # Get gradient w.r.t. interpolates
        gradients = autograd.grad(
            outputs=d_interpolates,
            inputs=interpolates,
            grad_outputs=fake,
            create_graph=True,
            retain_graph=True,
            only_inputs=True,
        )[0]
        gradients = gradients.view(gradients.size(0), -1)
        gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean()
        return gradient_penalty

效果:

中午睡觉的时候,用这个kaggle来train一下这个WGAN-GP,

直接设置critic =5 , epoch =1000 试一试

很可惜,第36个epoch的时候就崩掉了,不过生成的效果还不错,比之前的都要好一些,

所以,估计只要epoch足够多,用WGAN-GP可以生成比较好的动漫人脸的

相关推荐
2305_797882092 分钟前
AI识图小程序的功能框架设计
人工智能·微信小程序·小程序
果冻人工智能3 分钟前
向量搜索中常见的8个错误(以及如何避免它们)
人工智能
碳基学AI9 分钟前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义免费下载方法
大数据·人工智能·python·gpt·算法·语言模型·集成学习
补三补四12 分钟前
机器学习-聚类分析算法
人工智能·深度学习·算法·机器学习
果冻人工智能26 分钟前
法官们终于似乎明白了:如果没有复制,那就没有版权
人工智能
tle_sammy27 分钟前
AI 重构老旧系统:创业新曙光
人工智能·重构
果冻人工智能28 分钟前
什么是 MCP,以及你为什么该关注它
人工智能
誉鏐33 分钟前
PyTorch复现逻辑回归
人工智能·pytorch·逻辑回归
正脉科工 CAE仿真36 分钟前
基于ANSYS 概率设计和APDL编程的结构可靠性设计分析
人工智能·python·算法
EasyGBS41 分钟前
视频设备轨迹回放平台EasyCVR打造视频智能融合新平台,驱动智慧机场迈向数字新时代
网络·人工智能·安全·音视频