李宏毅hw-6利用GAN生成动漫图像

一、查漏补缺、熟能生巧:

1.什么是转置卷积convTranspose、以及这种转置卷积怎么使用:

(1)具体的原理直接看李沐老师的那个演示,非常清晰:

47 转置卷积【动手学深度学习v2】_哔哩哔哩_bilibili

(2)对于这个代码

复制代码
 def dconv_bn_relu(self, in_dim, out_dim):
        return nn.Sequential(
            nn.ConvTranspose2d(in_dim, out_dim, kernel_size=5, stride=2,
                               padding=2, output_padding=1, bias=False),        #double height and width
            nn.BatchNorm2d(out_dim),
            nn.ReLU(True)
        )

来自GPT的说法:

2.关于weight_init和self.apply()
3.关于G(z_samples)部分的一个不理解的地方:

二、DCGAN , WGAN ,WGAN_GP (三种的5个epoch的效果对比):

1.DCGAN版本:一般般,直接用助教的sample_code即可,
2.对于WGAN的代码:

也就是在DCGAN中进行这种修改就好了

效果:

3.采用WAGN-GP:

需要做的修改:

PyTorch-GAN/implementations/wgan_gp/wgan_gp.py at master · eriklindernoren/PyTorch-GAN (github.com)

主要是写一个函数,然后把weight_clam那个for循环注释掉,其他的就按照助教给的注释来就好了

复制代码
def compute_gradient_penalty(self,D, real_samples, fake_samples):    
        
        Tensor = torch.cuda.FloatTensor  #if cuda else torch.FloatTensor
        """
        #这里需要参考那个link引入gradient penalty function
        Implement gradient penalty function
        """
        """Calculates the gradient penalty loss for WGAN GP"""
        # Random weight term for interpolation between real and fake samples
        alpha = Tensor(np.random.random((real_samples.size(0), 1, 1, 1)))
        # Get random interpolation between real and fake samples
        interpolates = (alpha * real_samples + ((1 - alpha) * fake_samples)).requires_grad_(True)
        d_interpolates = D(interpolates)
        
        
        
        fake = Variable(Tensor(d_interpolates.shape).fill_(1.0), requires_grad=False)

        # Get gradient w.r.t. interpolates
        gradients = autograd.grad(
            outputs=d_interpolates,
            inputs=interpolates,
            grad_outputs=fake,
            create_graph=True,
            retain_graph=True,
            only_inputs=True,
        )[0]
        gradients = gradients.view(gradients.size(0), -1)
        gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean()
        return gradient_penalty

效果:

中午睡觉的时候,用这个kaggle来train一下这个WGAN-GP,

直接设置critic =5 , epoch =1000 试一试

很可惜,第36个epoch的时候就崩掉了,不过生成的效果还不错,比之前的都要好一些,

所以,估计只要epoch足够多,用WGAN-GP可以生成比较好的动漫人脸的

相关推荐
leijiwen2 分钟前
城市本地生活实体零售可信数据空间 RWA 平台方案
人工智能·生活·零售
L-ololois5 分钟前
【AI产品】一键比较GPT-5、Claude 4、Gemini 2.5、Deepseek多chatbot
人工智能·gpt
2401_841495645 分钟前
【自然语言处理】生成式语言模型GPT复现详细技术方案
人工智能·python·gpt·深度学习·语言模型·自然语言处理·transformer
Elastic 中国社区官方博客6 分钟前
如何使用 Ollama 在本地设置和运行 GPT-OSS
人工智能·gpt·elasticsearch·搜索引擎·ai·语言模型
FreeBuf_11 分钟前
PortGPT:研究人员如何教会AI自动回移植安全补丁
人工智能
不说别的就是很菜18 分钟前
【AI助手】从零构建文章抓取器 MCP(Node.js 版)
人工智能·node.js
GIS数据转换器23 分钟前
2025无人机在电力交通中的应用实践
运维·人工智能·物联网·安全·无人机·1024程序员节
Blossom.11835 分钟前
大模型在边缘计算中的部署挑战与优化策略
人工智能·python·算法·机器学习·边缘计算·pygame·tornado
HelloRevit1 小时前
机器学习、深度学习、大模型 是什么关系?
人工智能·深度学习·机器学习
共享笔记1 小时前
Adobe Photoshop Elements 2026 正式发布:AI 引擎让修图更简单!
人工智能·adobe·photoshop