6-1 pytorch中构建模型的3种方法

可以使用以下3种方式构建模型:

1,继承nn.Module基类构建自定义模型。

2,使用nn.Sequential按层顺序 构建模型。

3,继承nn.Module 基类构建模型并辅助应用模型容器 进行封装(nn.Sequential,nn.ModuleList,nn.ModuleDict)。

其中 第1种方式最为常见,第2种方式最简单,第3种方式最为灵活也较为复杂。
推荐使用第1种方式构建模型。

一、继承nn.Module基类构建自定义模型

以下是继承nn.Module基类构建自定义模型的一个范例。模型中的用到的层一般在__init__函数中定义 ,然后在forward方法中定义模型的正向传播逻辑

python 复制代码
from torch import nn 
class Net(nn.Module):
    
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3)
        self.pool1 = nn.MaxPool2d(kernel_size = 2,stride = 2)
        self.conv2 = nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5)
        self.pool2 = nn.MaxPool2d(kernel_size = 2,stride = 2)
        self.dropout = nn.Dropout2d(p = 0.1)
        self.adaptive_pool = nn.AdaptiveMaxPool2d((1,1))
        self.flatten = nn.Flatten()
        self.linear1 = nn.Linear(64,32)
        self.relu = nn.ReLU()
        self.linear2 = nn.Linear(32,1)
        
    def forward(self,x):
        x = self.conv1(x)
        x = self.pool1(x)
        x = self.conv2(x)
        x = self.pool2(x)
        x = self.dropout(x)
        x = self.adaptive_pool(x)
        x = self.flatten(x)
        x = self.linear1(x)
        x = self.relu(x)
        y = self.linear2(x)
        return y
        
net = Net()
print(net)
python 复制代码
from torchkeras import summary 
summary(net,input_shape= (3,32,32));

nn.Conv1d:普通一维卷积,常用于文本。参数个数 = 输入通道数×卷积核尺寸(如3)×卷积核个数 + 卷积核尺寸(如3)=卷积核尺寸(如3乘3)x输出通道数+输出通道数 (偏置数量)

nn.Conv2d:普通二维卷积,常用于图像。参数个数 = 输入通道数×卷积核尺寸(如3乘3)×卷积核个数 + 卷积核尺寸(如3乘3)。=卷积核尺寸(如3乘3)x输入通道数x输出通道数+输出通道数 (偏置数量)) 通过调整dilation参数大于1,可以变成空洞卷积,增加感受野。 通过调整groups参数不为1,可以变成分组卷积。分组卷积中每个卷积核仅对其对应的一个分组进行操作。 当groups参数数量等于输入通道数时,相当于tensorflow中的二维深度卷积层tf.keras.layers.DepthwiseConv2D。 利用分组卷积和1乘1卷积的组合操作,可以构造相当于Keras中的二维深度可分离卷积层tf.keras.layers.SeparableConv2D。

二、使用nn.Sequential按层顺序构建模型

使用nn.Sequential按层顺序构建模型无需定义forward方法。仅仅适合于简单的模型。

以下是使用nn.Sequential搭建模型的一些等价方法。

利用add_module方法

python 复制代码
net = nn.Sequential()
net.add_module("conv1",nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3))
net.add_module("pool1",nn.MaxPool2d(kernel_size = 2,stride = 2))
net.add_module("conv2",nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5))
net.add_module("pool2",nn.MaxPool2d(kernel_size = 2,stride = 2))
net.add_module("dropout",nn.Dropout2d(p = 0.1))
net.add_module("adaptive_pool",nn.AdaptiveMaxPool2d((1,1)))
net.add_module("flatten",nn.Flatten())
net.add_module("linear1",nn.Linear(64,32))
net.add_module("relu",nn.ReLU())
net.add_module("linear2",nn.Linear(32,1))
print(net)

利用变长参数

这种方式构建时不能给每个层指定名称。

python 复制代码
net = nn.Sequential(
    nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3),
    nn.MaxPool2d(kernel_size = 2,stride = 2),
    nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5),
    nn.MaxPool2d(kernel_size = 2,stride = 2),
    nn.Dropout2d(p = 0.1),
    nn.AdaptiveMaxPool2d((1,1)),
    nn.Flatten(),
    nn.Linear(64,32),
    nn.ReLU(),
    nn.Linear(32,1)
)

print(net)

利用OrderedDict

键值对形式:键为层的名字,值为层的定义

python 复制代码
from collections import OrderedDict

net = nn.Sequential(OrderedDict(
          [("conv1",nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3)),
            ("pool1",nn.MaxPool2d(kernel_size = 2,stride = 2)),
            ("conv2",nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5)),
            ("pool2",nn.MaxPool2d(kernel_size = 2,stride = 2)),
            ("dropout",nn.Dropout2d(p = 0.1)),
            ("adaptive_pool",nn.AdaptiveMaxPool2d((1,1))),
            ("flatten",nn.Flatten()),
            ("linear1",nn.Linear(64,32)),
            ("relu",nn.ReLU()),
            ("linear2",nn.Linear(32,1))
          ])
        )
print(net)

三、继承nn.Module基类构建模型并辅助应用模型容器进行封装

当模型的结构比较复杂时,我们可以应用模型容器(nn.Sequential,nn.ModuleList,nn.ModuleDict)对模型的部分结构进行封装。
这样做会让模型整体更加有层次感,有时候也能减少代码量。(复杂模型的时候比较常用)

注意,在下面的范例中我们每次仅仅使用一种模型容器,但实际上这些模型容器的使用是非常灵活的,可以在一个模型中任意组合任意嵌套使用。
相当于结合以上两种方式。

nn.Sequential作为模型容器

python 复制代码
class Net(nn.Module):
    
    def __init__(self):
        super(Net, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3),
            nn.MaxPool2d(kernel_size = 2,stride = 2),
            nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5),
            nn.MaxPool2d(kernel_size = 2,stride = 2),
            nn.Dropout2d(p = 0.1),
            nn.AdaptiveMaxPool2d((1,1))
        )
        self.dense = nn.Sequential(
            nn.Flatten(),
            nn.Linear(64,32),
            nn.ReLU(),
            nn.Linear(32,1)
        )
    def forward(self,x):
        x = self.conv(x)
        y = self.dense(x)
        return y 
    
net = Net()
print(net)

nn.ModuleList作为模型容器

注意下面中的ModuleList不能用Python中的列表代替。(即不用省略)

python 复制代码
class Net(nn.Module):
    
    def __init__(self):
        super(Net, self).__init__()
        self.layers = nn.ModuleList([
            nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3),
            nn.MaxPool2d(kernel_size = 2,stride = 2),
            nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5),
            nn.MaxPool2d(kernel_size = 2,stride = 2),
            nn.Dropout2d(p = 0.1),
            nn.AdaptiveMaxPool2d((1,1)),
            nn.Flatten(),
            nn.Linear(64,32),
            nn.ReLU(),
            nn.Linear(32,1)]
        )
    def forward(self,x):
        for layer in self.layers:
            x = layer(x)
        return x
net = Net()
print(net)

nn.ModuleDict作为模型容器

注意下面中的ModuleDict不能用Python中的字典代替。

python 复制代码
class Net(nn.Module):
    
    def __init__(self):
        super(Net, self).__init__()
        self.layers_dict = nn.ModuleDict({"conv1":nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3),
               "pool": nn.MaxPool2d(kernel_size = 2,stride = 2),
               "conv2":nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5),
               "dropout": nn.Dropout2d(p = 0.1),
               "adaptive":nn.AdaptiveMaxPool2d((1,1)),
               "flatten": nn.Flatten(),
               "linear1": nn.Linear(64,32),
               "relu":nn.ReLU(),
               "linear2": nn.Linear(32,1)
              })
    def forward(self,x):
        layers = ["conv1","pool","conv2","pool","dropout","adaptive",
                  "flatten","linear1","relu","linear2","sigmoid"]
        for layer in layers:
            x = self.layers_dict[layer](x) # 只找有的 sigmoid是没有的
        return x
net = Net()
print(net)

参考:https://github.com/lyhue1991/eat_pytorch_in_20_days

相关推荐
sp_fyf_20242 小时前
【大语言模型】ACL2024论文-35 WAV2GLOSS:从语音生成插值注解文本
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理·数据挖掘
AITIME论道2 小时前
论文解读 | EMNLP2024 一种用于大语言模型版本更新的学习率路径切换训练范式
人工智能·深度学习·学习·机器学习·语言模型
Dovir多多3 小时前
Python数据处理——re库与pydantic的使用总结与实战,处理采集到的思科ASA防火墙设备信息
网络·python·计算机网络·安全·网络安全·数据分析
明明真系叻3 小时前
第二十六周机器学习笔记:PINN求正反解求PDE文献阅读——正问题
人工智能·笔记·深度学习·机器学习·1024程序员节
XianxinMao4 小时前
Transformer 架构对比:Dense、MoE 与 Hybrid-MoE 的优劣分析
深度学习·架构·transformer
88号技师5 小时前
2024年12月一区SCI-加权平均优化算法Weighted average algorithm-附Matlab免费代码
人工智能·算法·matlab·优化算法
IT猿手5 小时前
多目标应用(一):多目标麋鹿优化算法(MOEHO)求解10个工程应用,提供完整MATLAB代码
开发语言·人工智能·算法·机器学习·matlab
88号技师5 小时前
几款性能优秀的差分进化算法DE(SaDE、JADE,SHADE,LSHADE、LSHADE_SPACMA、LSHADE_EpSin)-附Matlab免费代码
开发语言·人工智能·算法·matlab·优化算法
2301_764441335 小时前
基于python语音启动电脑应用程序
人工智能·语音识别
HyperAI超神经5 小时前
未来具身智能的触觉革命!TactEdge传感器让机器人具备精细触觉感知,实现织物缺陷检测、灵巧操作控制
人工智能·深度学习·机器人·触觉传感器·中国地质大学·机器人智能感知·具身触觉