R语言实现样本量的估算(2)

本文默认α=0.05(sig.level),β=0.2(power),根据研究需要可调整。

导入包

复制代码
library(pwr)

(1)已知标准差和预期差异

1、单样本t检验:某治疗措施预期提高某物质水平8mg/L,标准差为10mg/L。

复制代码
#单样本t检验
pwr.t.test(d = 8/10, #期望的平均差异/总体标准差
           sig.level = 0.05,
           power = 1-0.2,
           type = "one.sample",
           alternative = "greater")#two.sided两边;greater:表示单侧检验中的大尾检验;less: 表示单侧检验中的小尾检验

2、两样本t检验:(1)已知预期A治疗措施与B治疗措施相差30%的标准差,两组样本量相同,计算样本量(2)已知预期A治疗措施差于B治疗措施60%的标准差,已知A治疗措施90人,计算B样本量。

复制代码
#(1)两样本t检验(样本数量相同)
pwr.t.test(d = 0.3,#标准差的30%
           sig.level = 0.05,
           power = 1 - 0.2,
           type = "two.sample",
           alternative = "two.sided"
)
#(2)两样本t检验(样本数量不同)
pwr.t2n.test(d=0.6,
             n1=90,
             sig.level = 0.05, 
             power =0.8,
             alternative="greater")

(2)已知样本率:(1)已知A治疗措施预期并发症率7%,一般治疗措施并发症率12%,计算A的样本量。(2)已知A治疗措施预期并发症率7%,B治疗措施并发症率12%,计算A、B的样本量。(3)已知A治疗措施预期并发症率7%,样本量164,B治疗措施并发症率12%,计算B的样本量。(4)已知预期A法有效率为90%,B法70%,C法80%,D法60%,计算总的样本量。

复制代码
#(1)一组样本
pwr.p.test(h=ES.h(0.07,0.12),power=0.8,sig.level=0.05,alternative="less")
#(2)两组相同样本
pwr.2p.test(h=ES.h(0.07,0.12),power=0.8,sig.level=0.05,alternative="less")
#(3)两组不同样本量
pwr.2p2n.test(h = ES.h(0.07,0.12),
              n1=164,
              n2=90,
              sig.level = 0.05,
              alternative = "less"
)
#(4)多样本率
prob <- rbind(c(0.9, 0.7, 0.8,0.6), # 有效率
              c(0.1, 0.3, 0.2,0.4)) # 无效率
pwr.chisq.test(w = ES.w2(prob/4), # 效应大小
               df = (4-1)*(3-1), #自由度
               sig.level = 0.05,
               power = 1-0.2
)
相关推荐
Tiger Z2 天前
《R for Data Science (2e)》免费中文翻译 (第17章) --- Dates and times(1)
r语言·编程·数据科学
杜子不疼.2 天前
计算机视觉热门模型手册:Faster R-CNN / YOLO / SAM 技术原理 + 应用场景对比
人工智能·计算机视觉·r语言·cnn
Davina_yu2 天前
Windows 下升级 R 语言至最新版
开发语言·windows·r语言
青春不败 177-3266-05203 天前
基于R语言生物信息学大数据分析与绘图技术应用
数据分析·r语言·生物信息·生信·高通量
Catherinemin3 天前
【R语言】2.注释&基础运算
开发语言·r语言
邢博士谈科教3 天前
TCGA单基因高低分组的差异分析后的GSEA-GO和KEGG富集分析教程
数据分析·r语言
Catherinemin4 天前
【R语言】1.安装&基础语法
开发语言·r语言
Tiger Z4 天前
R 语言科研绘图 --- 3D绘图-汇总1
r语言·论文·科研·绘图·研究生
kisshuan123965 天前
黄芪属植物物种识别与分类:基于 Faster R-CNN C4 模型的深度学习实现
深度学习·分类·r语言
闻缺陷则喜何志丹6 天前
【二分查找】P9822 [ICPC2020 Shanghai R] Walker【有误差】|普及
开发语言·算法·r语言