R语言实现样本量的估算(2)

本文默认α=0.05(sig.level),β=0.2(power),根据研究需要可调整。

导入包

复制代码
library(pwr)

(1)已知标准差和预期差异

1、单样本t检验:某治疗措施预期提高某物质水平8mg/L,标准差为10mg/L。

复制代码
#单样本t检验
pwr.t.test(d = 8/10, #期望的平均差异/总体标准差
           sig.level = 0.05,
           power = 1-0.2,
           type = "one.sample",
           alternative = "greater")#two.sided两边;greater:表示单侧检验中的大尾检验;less: 表示单侧检验中的小尾检验

2、两样本t检验:(1)已知预期A治疗措施与B治疗措施相差30%的标准差,两组样本量相同,计算样本量(2)已知预期A治疗措施差于B治疗措施60%的标准差,已知A治疗措施90人,计算B样本量。

复制代码
#(1)两样本t检验(样本数量相同)
pwr.t.test(d = 0.3,#标准差的30%
           sig.level = 0.05,
           power = 1 - 0.2,
           type = "two.sample",
           alternative = "two.sided"
)
#(2)两样本t检验(样本数量不同)
pwr.t2n.test(d=0.6,
             n1=90,
             sig.level = 0.05, 
             power =0.8,
             alternative="greater")

(2)已知样本率:(1)已知A治疗措施预期并发症率7%,一般治疗措施并发症率12%,计算A的样本量。(2)已知A治疗措施预期并发症率7%,B治疗措施并发症率12%,计算A、B的样本量。(3)已知A治疗措施预期并发症率7%,样本量164,B治疗措施并发症率12%,计算B的样本量。(4)已知预期A法有效率为90%,B法70%,C法80%,D法60%,计算总的样本量。

复制代码
#(1)一组样本
pwr.p.test(h=ES.h(0.07,0.12),power=0.8,sig.level=0.05,alternative="less")
#(2)两组相同样本
pwr.2p.test(h=ES.h(0.07,0.12),power=0.8,sig.level=0.05,alternative="less")
#(3)两组不同样本量
pwr.2p2n.test(h = ES.h(0.07,0.12),
              n1=164,
              n2=90,
              sig.level = 0.05,
              alternative = "less"
)
#(4)多样本率
prob <- rbind(c(0.9, 0.7, 0.8,0.6), # 有效率
              c(0.1, 0.3, 0.2,0.4)) # 无效率
pwr.chisq.test(w = ES.w2(prob/4), # 效应大小
               df = (4-1)*(3-1), #自由度
               sig.level = 0.05,
               power = 1-0.2
)
相关推荐
Lun3866buzha15 小时前
【深度学习】Mask R-CNN在温室番茄成熟度检测中的应用——基于ResNet18与FPN的多级特征融合分类系统
深度学习·r语言·cnn
Katecat996631 天前
夜间收费站与道路场景多类型车辆检测与分类:基于Faster R-CNN R50 PAFPN的实现_1
分类·r语言·cnn
Piar1231sdafa1 天前
红枣目标检测Cascade R-CNN改进版_FPN结构优化详解
目标检测·r语言·cnn
天桥下的卖艺者2 天前
R语言绘制复杂加权数据(nhanes数据)多模型生存分析决策曲线
开发语言·r语言
Tiger Z2 天前
《R for Data Science (2e)》免费中文翻译 (第15章) --- Regular expression(1)
数据分析·r语言·数据科学·免费书籍
Dekesas96952 天前
【深度学习】基于Faster R-CNN的黄瓜幼苗智能识别与定位系统,农业AI新突破
人工智能·深度学习·r语言
青啊青斯2 天前
二、PaddlePaddle seal_recognition印章内容提取
人工智能·r语言·paddlepaddle
Piar1231sdafa2 天前
木结构建筑元素识别与分类:基于Faster R-CNN的高精度检测方法
分类·r语言·cnn
Piar1231sdafa3 天前
智能拖拉机目标检测:改进Faster R-CNN的实践与优化
目标检测·r语言·cnn
青春不败 177-3266-05204 天前
HMSC联合物种分布模型在群落生态学中的贝叶斯统计分析应用
随机森林·r语言·生态学·生物多样性·生态环境·生物群落·物种分布