多目标优化算法:基于非支配排序的海象优化算法(NSWOA)MATLAB

一、海象优化算法WOA

海象优化算法(Walrus Optimization Algorithm,WOA)由Trojovský等人于2023年提出,该算法模拟海象的进食,迁移,逃跑和对抗捕食者的过程,WOA包含探索、迁移和开发三个阶段,具有平衡全局搜索和局部搜索的能力。

海象是海洋中的象形生物,其身体体积庞大,皮肤厚实且多有皱褶,表面覆盖着稀疏的刚毛。海象的眼睛较小,视力状况并不佳。此外,其长有两枚长牙,与陆地上的大象相比,海象的四肢因适应水中生活已转化为鳍状,因此无法像陆地大象那样步行于陆上。在冰面上,海象主要依靠后鳍脚向前弯曲以及獠牙刺入冰中的方式进行匍匐前进。因此,海象的学名若用中文直译,便是"用牙一起步行者"。此外,海象的鼻子短小且缺乏耳壳,外观上并不美观。

海象是群栖动物,生活在冰冷的海水中和陆地的冰块上,过着两栖的生活。每群海象的数量可以从几十只、数百只到成千上万只不等。为了缓解在海洋中长期游动后的疲劳,海象在陆地上的大多数时间会进行睡觉和休息。在陆地上,它们有时会用獠牙和较短的后肢摇摇晃晃地行走,这种行走方式显得十分笨拙,滑稽可笑。然而,在海水中,海象则表现出极高的灵活性。它们的身体呈流线型,发达的肌肉以及强有力的鳍状肢能够帮助它们以每小时24公里的速度前进。此外,海象还具备潜至水下70米以下深度的能力,并能够完成取食、求偶、交配等各种活动。

参考文献:

Trojovský, P., Dehghani, M. A new bio-inspired metaheuristic algorithm for solving optimization problems based on walruses behavior . Sci Rep 13 , 8775 (2023). A new bio-inspired metaheuristic algorithm for solving optimization problems based on walruses behavior | Scientific Reports

二、基于非支配排序的海象优化算法NSWOA

基于非支配排序的海象优化算法(Non-Dominated Walrus Optimization Algorithm,NSWOA)由海象优化算法与非支配排序策略结合而成。将NSWOA用于求解46个多目标测试函数(ZDT1、ZDT2、ZDT3、ZDT4、ZDT6、DTLZ1-DTLZ7、WFG1-WFG10、UF1-UF10、CF1-CF10、Kursawe、Poloni、Viennet2、Viennet3)以及1个工程应用(盘式制动器设计),并采用IGD、GD、HV、SP进行评价。

(1)部分代码

复制代码
close all;
clear ; 
clc;
%%
% TestProblem测试问题说明:
%一共46个多目标测试函数,详情如下:
%1-5:ZDT1、ZDT2、ZDT3、ZDT4、ZDT6
%6-12:DZDT1-DZDT7
%13-22:wfg1-wfg10
%23-32:uf1-uf10
%33-42:cf1-cf10
%43-46:Kursawe、Poloni、Viennet2、Viennet3
%47 盘式制动器设计 温泽宇,谢珺,谢刚,续欣莹.基于新型拥挤度距离的多目标麻雀搜索算法[J].计算机工程与应用,2021,57(22):102-109.
%%
TestProblem=1;%1-47
MultiObj = GetFunInfo(TestProblem);
MultiObjFnc=MultiObj.name;%问题名
% Parameters
params.Np = 100;        % Population size
params.Nr = 200;        % Repository size
params.maxgen =100;    % Maximum number of generations
numOfObj=MultiObj.numOfObj;%目标函数个数
D=MultiObj.nVar;%维度
f = NSWOA(params,MultiObj);
X=f(:,1:D);%PS
Obtained_Pareto=f(:,D+1:D+numOfObj);%PF
if(isfield(MultiObj,'truePF'))%判断是否有参考的PF
True_Pareto=MultiObj.truePF;
%%  Metric Value
% ResultData的值分别是IGD、GD、HV、Spacing  (HV越大越好,其他指标越小越好)
ResultData=[IGD(Obtained_Pareto,True_Pareto),GD(Obtained_Pareto,True_Pareto),HV(Obtained_Pareto,True_Pareto),Spacing(Obtained_Pareto)];
else
    %计算每个算法的Spacing,Spacing越小说明解集分布越均匀
    ResultData=Spacing(Obtained_Pareto);%计算的Spacing
end
%%
disp('Repository fitness values are stored in Obtained_Pareto');
disp('Repository particles positions are store in X');

(2)部分结果

三、完整MATLAB代码

相关推荐
煤泥做不到的!13 分钟前
挑战一个月基本掌握C++(第十一天)进阶文件,异常处理,动态内存
开发语言·c++
F-2H16 分钟前
C语言:指针4(常量指针和指针常量及动态内存分配)
java·linux·c语言·开发语言·前端·c++
chenziang11 小时前
leetcode hot100 环形链表2
算法·leetcode·链表
bryant_meng1 小时前
【python】OpenCV—Image Moments
开发语言·python·opencv·moments·图片矩
若亦_Royi2 小时前
C++ 的大括号的用法合集
开发语言·c++
Captain823Jack2 小时前
nlp新词发现——浅析 TF·IDF
人工智能·python·深度学习·神经网络·算法·自然语言处理
沅_Yuan3 小时前
基于GRU门控循环神经网络的多分类预测【MATLAB】
matlab·分类·gru
资源补给站3 小时前
大恒相机开发(2)—Python软触发调用采集图像
开发语言·python·数码相机
Captain823Jack3 小时前
w04_nlp大模型训练·中文分词
人工智能·python·深度学习·神经网络·算法·自然语言处理·中文分词
m0_748247553 小时前
Web 应用项目开发全流程解析与实战经验分享
开发语言·前端·php