多目标优化算法:基于非支配排序的海象优化算法(NSWOA)MATLAB

一、海象优化算法WOA

海象优化算法(Walrus Optimization Algorithm,WOA)由Trojovský等人于2023年提出,该算法模拟海象的进食,迁移,逃跑和对抗捕食者的过程,WOA包含探索、迁移和开发三个阶段,具有平衡全局搜索和局部搜索的能力。

海象是海洋中的象形生物,其身体体积庞大,皮肤厚实且多有皱褶,表面覆盖着稀疏的刚毛。海象的眼睛较小,视力状况并不佳。此外,其长有两枚长牙,与陆地上的大象相比,海象的四肢因适应水中生活已转化为鳍状,因此无法像陆地大象那样步行于陆上。在冰面上,海象主要依靠后鳍脚向前弯曲以及獠牙刺入冰中的方式进行匍匐前进。因此,海象的学名若用中文直译,便是"用牙一起步行者"。此外,海象的鼻子短小且缺乏耳壳,外观上并不美观。

海象是群栖动物,生活在冰冷的海水中和陆地的冰块上,过着两栖的生活。每群海象的数量可以从几十只、数百只到成千上万只不等。为了缓解在海洋中长期游动后的疲劳,海象在陆地上的大多数时间会进行睡觉和休息。在陆地上,它们有时会用獠牙和较短的后肢摇摇晃晃地行走,这种行走方式显得十分笨拙,滑稽可笑。然而,在海水中,海象则表现出极高的灵活性。它们的身体呈流线型,发达的肌肉以及强有力的鳍状肢能够帮助它们以每小时24公里的速度前进。此外,海象还具备潜至水下70米以下深度的能力,并能够完成取食、求偶、交配等各种活动。

参考文献:

Trojovský, P., Dehghani, M. A new bio-inspired metaheuristic algorithm for solving optimization problems based on walruses behavior . Sci Rep 13 , 8775 (2023). A new bio-inspired metaheuristic algorithm for solving optimization problems based on walruses behavior | Scientific Reports

二、基于非支配排序的海象优化算法NSWOA

基于非支配排序的海象优化算法(Non-Dominated Walrus Optimization Algorithm,NSWOA)由海象优化算法与非支配排序策略结合而成。将NSWOA用于求解46个多目标测试函数(ZDT1、ZDT2、ZDT3、ZDT4、ZDT6、DTLZ1-DTLZ7、WFG1-WFG10、UF1-UF10、CF1-CF10、Kursawe、Poloni、Viennet2、Viennet3)以及1个工程应用(盘式制动器设计),并采用IGD、GD、HV、SP进行评价。

(1)部分代码

复制代码
close all;
clear ; 
clc;
%%
% TestProblem测试问题说明:
%一共46个多目标测试函数,详情如下:
%1-5:ZDT1、ZDT2、ZDT3、ZDT4、ZDT6
%6-12:DZDT1-DZDT7
%13-22:wfg1-wfg10
%23-32:uf1-uf10
%33-42:cf1-cf10
%43-46:Kursawe、Poloni、Viennet2、Viennet3
%47 盘式制动器设计 温泽宇,谢珺,谢刚,续欣莹.基于新型拥挤度距离的多目标麻雀搜索算法[J].计算机工程与应用,2021,57(22):102-109.
%%
TestProblem=1;%1-47
MultiObj = GetFunInfo(TestProblem);
MultiObjFnc=MultiObj.name;%问题名
% Parameters
params.Np = 100;        % Population size
params.Nr = 200;        % Repository size
params.maxgen =100;    % Maximum number of generations
numOfObj=MultiObj.numOfObj;%目标函数个数
D=MultiObj.nVar;%维度
f = NSWOA(params,MultiObj);
X=f(:,1:D);%PS
Obtained_Pareto=f(:,D+1:D+numOfObj);%PF
if(isfield(MultiObj,'truePF'))%判断是否有参考的PF
True_Pareto=MultiObj.truePF;
%%  Metric Value
% ResultData的值分别是IGD、GD、HV、Spacing  (HV越大越好,其他指标越小越好)
ResultData=[IGD(Obtained_Pareto,True_Pareto),GD(Obtained_Pareto,True_Pareto),HV(Obtained_Pareto,True_Pareto),Spacing(Obtained_Pareto)];
else
    %计算每个算法的Spacing,Spacing越小说明解集分布越均匀
    ResultData=Spacing(Obtained_Pareto);%计算的Spacing
end
%%
disp('Repository fitness values are stored in Obtained_Pareto');
disp('Repository particles positions are store in X');

(2)部分结果

三、完整MATLAB代码

相关推荐
香蕉可乐荷包蛋24 分钟前
Python面试问题
开发语言·python·面试
Vacant Seat29 分钟前
贪心算法-跳跃游戏II
算法·游戏·贪心算法
ErizJ34 分钟前
Golang|分布式索引架构
开发语言·分布式·后端·架构·golang
.生产的驴35 分钟前
SpringBoot 接口国际化i18n 多语言返回 中英文切换 全球化 语言切换
java·开发语言·spring boot·后端·前端框架
夜松云38 分钟前
从对数变换到深度框架:逻辑回归与交叉熵的数学原理及PyTorch实战
pytorch·算法·逻辑回归·梯度下降·交叉熵·对数变换·sigmoid函数
八股文领域大手子43 分钟前
深入浅出限流算法(三):追求极致精确的滑动日志
开发语言·数据结构·算法·leetcode·mybatis·哈希算法
啊阿狸不会拉杆1 小时前
人工智能数学基础(一):人工智能与数学
人工智能·python·算法
一捌年1 小时前
java排序算法-计数排序
数据结构·算法·排序算法
几度泥的菜花1 小时前
优雅实现网页弹窗提示功能:JavaScript与CSS完美结合
开发语言·javascript·css
weixin_307779131 小时前
AWS Glue ETL设计与调度最佳实践
开发语言·数据仓库·云计算·etl·aws