A Survey on Fairness in Large Language Models

本文是LLM系列文章,针对《A Survey on Fairness in Large Language Models》的翻译。

大型语言模型中的公平性研究综述

  • 摘要
  • [1 引言](#1 引言)
  • [2 评估度量](#2 评估度量)
  • [3 内在去偏](#3 内在去偏)
  • [4 外部去偏](#4 外部去偏)
  • [5 大型LLM的公平性](#5 大型LLM的公平性)
  • [6 讨论](#6 讨论)
  • [7 结论](#7 结论)

摘要

大型语言模型(LLM)已经显示出强大的性能和发展前景,并在现实世界中得到了广泛的部署。然而,LLM可以从未处理的训练数据中捕捉社会偏见,并将这些偏见传播到下游任务。不公平的LLM制度具有不良的社会影响和潜在的危害。在本文中,我们对LLM中的公平性的相关研究进行了全面的综述。首先,对于中等规模LLM,我们分别从内在偏差和外在偏差的角度介绍了评估指标和去偏方法。然后,对于大规模LLM,我们介绍了最近的公平性研究,包括公平性评估、偏差原因和去偏差方法。最后,我们讨论并深入了解LLM公平发展的挑战和未来方向。

1 引言

2 评估度量

3 内在去偏

4 外部去偏

5 大型LLM的公平性

6 讨论

7 结论

我们对LLM中的公平性问题进行了全面的调查。社会偏见主要来源于包含有害信息和不平衡数据的训练数据,可分为内在偏见和外在偏见。我们总结了LLM的公平性研究,包括中等规模LLM的内在和外在评估指标和去偏策略,以及大规模LLM的公正性评估、偏误原因和去偏方法。此外,我们还讨论了LLM公平性发展中的挑战以及参与者可以努力的研究方向。本次调查的结论是,当前LLM的公平性研究仍需在评估偏差、偏差来源和去偏差策略方面加强。特别是对于仍处于早期阶段的大规模LLM的公平性,从业者应该结合更多的技术,构建全面、安全的语言模型系统。

相关推荐
AgeClub5 分钟前
服务600+养老社区,Rendever如何通过“VR+养老”缓解老年孤独?
大数据·人工智能
香宝的最强后援XD9 分钟前
Cursor无限邮箱续费方法
语言模型·chatgpt·文心一言
rocksun14 分钟前
OneUptime MCP服务器:AI原生可观测性融入你的工作流程
人工智能·监控
weisian15123 分钟前
人工智能-基础篇-10-什么是卷积神经网络CNN(网格状数据处理:输入层,卷积层,激活函数,池化层,全连接层,输出层等)
人工智能·神经网络·cnn
静心问道1 小时前
SELF-INSTRUCT:使用自生成指令对齐语言模型
人工智能·语言模型·大模型
芷栀夏1 小时前
基于Anything LLM的本地知识库系统远程访问实现路径
数据库·人工智能
AI生存日记1 小时前
AI 日报:阿里、字节等企业密集发布新技术,覆盖语音、图像与药物研发等领域
人工智能·华为云·语音识别·open ai大模型
hjs_deeplearning1 小时前
认知篇#10:何为分布式与多智能体?二者联系?
人工智能·分布式·深度学习·学习·agent·智能体
瑶光守护者1 小时前
【卫星通信】超低比特率语音编解码器(ULBC)的信道特性评估
深度学习·华为·卫星通信·3gpp·ulbc
kngines2 小时前
【字节跳动】数据挖掘面试题0001:打车场景下POI与ODR空间关联查询
人工智能·数据挖掘·面试题