A Survey on Fairness in Large Language Models

本文是LLM系列文章,针对《A Survey on Fairness in Large Language Models》的翻译。

大型语言模型中的公平性研究综述

  • 摘要
  • [1 引言](#1 引言)
  • [2 评估度量](#2 评估度量)
  • [3 内在去偏](#3 内在去偏)
  • [4 外部去偏](#4 外部去偏)
  • [5 大型LLM的公平性](#5 大型LLM的公平性)
  • [6 讨论](#6 讨论)
  • [7 结论](#7 结论)

摘要

大型语言模型(LLM)已经显示出强大的性能和发展前景,并在现实世界中得到了广泛的部署。然而,LLM可以从未处理的训练数据中捕捉社会偏见,并将这些偏见传播到下游任务。不公平的LLM制度具有不良的社会影响和潜在的危害。在本文中,我们对LLM中的公平性的相关研究进行了全面的综述。首先,对于中等规模LLM,我们分别从内在偏差和外在偏差的角度介绍了评估指标和去偏方法。然后,对于大规模LLM,我们介绍了最近的公平性研究,包括公平性评估、偏差原因和去偏差方法。最后,我们讨论并深入了解LLM公平发展的挑战和未来方向。

1 引言

2 评估度量

3 内在去偏

4 外部去偏

5 大型LLM的公平性

6 讨论

7 结论

我们对LLM中的公平性问题进行了全面的调查。社会偏见主要来源于包含有害信息和不平衡数据的训练数据,可分为内在偏见和外在偏见。我们总结了LLM的公平性研究,包括中等规模LLM的内在和外在评估指标和去偏策略,以及大规模LLM的公正性评估、偏误原因和去偏方法。此外,我们还讨论了LLM公平性发展中的挑战以及参与者可以努力的研究方向。本次调查的结论是,当前LLM的公平性研究仍需在评估偏差、偏差来源和去偏差策略方面加强。特别是对于仍处于早期阶段的大规模LLM的公平性,从业者应该结合更多的技术,构建全面、安全的语言模型系统。

相关推荐
大模型任我行21 小时前
阿里:揭示RLVR训练不稳定性根源
人工智能·语言模型·自然语言处理·论文笔记
沃达德软件1 天前
视频增强技术解析
人工智能·目标检测·机器学习·计算机视觉·超分辨率重建
魔乐社区1 天前
GLM-5上线魔乐社区,基于昇腾的模型推理+训练部署教程请查收!
人工智能·开源·大模型
geneculture1 天前
化繁为简且以简驭繁:唯文论英汉对照哲学术语49个主义/论
人工智能·融智学的重要应用·哲学与科学统一性·信息融智学·融智时代(杂志)
睡醒了叭1 天前
coze-工作流-http请求
人工智能·aigc
twilight_4691 天前
机器学习与模式识别——机器学习中的搜索算法
人工智能·python·机器学习
冰西瓜6001 天前
深度学习的数学原理(十)—— 权重如何自发分工
人工智能·深度学习·计算机视觉
niuniudengdeng1 天前
基于时序上下文编码的端到端无文本依赖语音分词模型
人工智能·数学·算法·概率论
Soonyang Zhang1 天前
flashinfer attention kernel分析
人工智能·算子·推理框架
林籁泉韵71 天前
2026年GEO服务商推荐:覆盖多场景适配,助力企业AI时代增长
人工智能