A Survey on Fairness in Large Language Models

本文是LLM系列文章,针对《A Survey on Fairness in Large Language Models》的翻译。

大型语言模型中的公平性研究综述

  • 摘要
  • [1 引言](#1 引言)
  • [2 评估度量](#2 评估度量)
  • [3 内在去偏](#3 内在去偏)
  • [4 外部去偏](#4 外部去偏)
  • [5 大型LLM的公平性](#5 大型LLM的公平性)
  • [6 讨论](#6 讨论)
  • [7 结论](#7 结论)

摘要

大型语言模型(LLM)已经显示出强大的性能和发展前景,并在现实世界中得到了广泛的部署。然而,LLM可以从未处理的训练数据中捕捉社会偏见,并将这些偏见传播到下游任务。不公平的LLM制度具有不良的社会影响和潜在的危害。在本文中,我们对LLM中的公平性的相关研究进行了全面的综述。首先,对于中等规模LLM,我们分别从内在偏差和外在偏差的角度介绍了评估指标和去偏方法。然后,对于大规模LLM,我们介绍了最近的公平性研究,包括公平性评估、偏差原因和去偏差方法。最后,我们讨论并深入了解LLM公平发展的挑战和未来方向。

1 引言

2 评估度量

3 内在去偏

4 外部去偏

5 大型LLM的公平性

6 讨论

7 结论

我们对LLM中的公平性问题进行了全面的调查。社会偏见主要来源于包含有害信息和不平衡数据的训练数据,可分为内在偏见和外在偏见。我们总结了LLM的公平性研究,包括中等规模LLM的内在和外在评估指标和去偏策略,以及大规模LLM的公正性评估、偏误原因和去偏方法。此外,我们还讨论了LLM公平性发展中的挑战以及参与者可以努力的研究方向。本次调查的结论是,当前LLM的公平性研究仍需在评估偏差、偏差来源和去偏差策略方面加强。特别是对于仍处于早期阶段的大规模LLM的公平性,从业者应该结合更多的技术,构建全面、安全的语言模型系统。

相关推荐
水如烟21 小时前
孤能子视角:“组织行为学–组织文化“
人工智能
大山同学21 小时前
图片补全-Context Encoder
人工智能·机器学习·计算机视觉
薛定谔的猫198221 小时前
十七、用 GPT2 中文对联模型实现经典上联自动对下联:
人工智能·深度学习·gpt2·大模型 训练 调优
壮Sir不壮1 天前
2026年奇点:Clawdbot引爆个人AI代理
人工智能·ai·大模型·claude·clawdbot·moltbot·openclaw
PaperRed ai写作降重助手1 天前
高性价比 AI 论文写作软件推荐:2026 年预算友好型
人工智能·aigc·论文·写作·ai写作·智能降重
玉梅小洋1 天前
Claude Code 从入门到精通(七):Sub Agent 与 Skill 终极PK
人工智能·ai·大模型·ai编程·claude·ai工具
-嘟囔着拯救世界-1 天前
【保姆级教程】Win11 下从零部署 Claude Code:本地环境配置 + VSCode 可视化界面全流程指南
人工智能·vscode·ai·编辑器·html5·ai编程·claude code
正见TrueView1 天前
程一笑的价值选择:AI金玉其外,“收割”老人败絮其中
人工智能
Imm7771 天前
中国知名的车膜品牌推荐几家
人工智能·python
风静如云1 天前
Claude Code:进入dash模式
人工智能