A Survey on Fairness in Large Language Models

本文是LLM系列文章,针对《A Survey on Fairness in Large Language Models》的翻译。

大型语言模型中的公平性研究综述

  • 摘要
  • [1 引言](#1 引言)
  • [2 评估度量](#2 评估度量)
  • [3 内在去偏](#3 内在去偏)
  • [4 外部去偏](#4 外部去偏)
  • [5 大型LLM的公平性](#5 大型LLM的公平性)
  • [6 讨论](#6 讨论)
  • [7 结论](#7 结论)

摘要

大型语言模型(LLM)已经显示出强大的性能和发展前景,并在现实世界中得到了广泛的部署。然而,LLM可以从未处理的训练数据中捕捉社会偏见,并将这些偏见传播到下游任务。不公平的LLM制度具有不良的社会影响和潜在的危害。在本文中,我们对LLM中的公平性的相关研究进行了全面的综述。首先,对于中等规模LLM,我们分别从内在偏差和外在偏差的角度介绍了评估指标和去偏方法。然后,对于大规模LLM,我们介绍了最近的公平性研究,包括公平性评估、偏差原因和去偏差方法。最后,我们讨论并深入了解LLM公平发展的挑战和未来方向。

1 引言

2 评估度量

3 内在去偏

4 外部去偏

5 大型LLM的公平性

6 讨论

7 结论

我们对LLM中的公平性问题进行了全面的调查。社会偏见主要来源于包含有害信息和不平衡数据的训练数据,可分为内在偏见和外在偏见。我们总结了LLM的公平性研究,包括中等规模LLM的内在和外在评估指标和去偏策略,以及大规模LLM的公正性评估、偏误原因和去偏方法。此外,我们还讨论了LLM公平性发展中的挑战以及参与者可以努力的研究方向。本次调查的结论是,当前LLM的公平性研究仍需在评估偏差、偏差来源和去偏差策略方面加强。特别是对于仍处于早期阶段的大规模LLM的公平性,从业者应该结合更多的技术,构建全面、安全的语言模型系统。

相关推荐
白日做梦Q7 分钟前
Transformer 能否取代 CNN?图像去噪中的新范式探索
深度学习·cnn·transformer
南极星100512 分钟前
OPENCV(python)--初学之路(十四)哈里斯角检测
人工智能·opencv·计算机视觉
咚咚王者18 分钟前
人工智能之数据分析 Pandas:第九章 性能优化
人工智能·数据分析·pandas
Acrel1500035313821 分钟前
重构能源管理:Acrel EMS 3.0 让降本增效成为底层逻辑
大数据·人工智能
dhdjjsjs34 分钟前
Day31 PythonStudy
人工智能·机器学习
TextIn智能文档云平台38 分钟前
深度学习在版面分析中的应用方法
人工智能·深度学习
金融小师妹38 分钟前
黄金上探4260后基于阻力位识别模型回落,本周聚焦美联储决议的LSTM-NLP联合预测
大数据·人工智能·深度学习
Coding茶水间44 分钟前
基于深度学习的船舶检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
我不是小upper1 小时前
CNN+BiLSTM !!最强序列建模组合!!!
人工智能·python·深度学习·神经网络·cnn
锐学AI1 小时前
从零开始学MCP(四)- 认识MCP clients
人工智能·python