A Survey on Fairness in Large Language Models

本文是LLM系列文章,针对《A Survey on Fairness in Large Language Models》的翻译。

大型语言模型中的公平性研究综述

  • 摘要
  • [1 引言](#1 引言)
  • [2 评估度量](#2 评估度量)
  • [3 内在去偏](#3 内在去偏)
  • [4 外部去偏](#4 外部去偏)
  • [5 大型LLM的公平性](#5 大型LLM的公平性)
  • [6 讨论](#6 讨论)
  • [7 结论](#7 结论)

摘要

大型语言模型(LLM)已经显示出强大的性能和发展前景,并在现实世界中得到了广泛的部署。然而,LLM可以从未处理的训练数据中捕捉社会偏见,并将这些偏见传播到下游任务。不公平的LLM制度具有不良的社会影响和潜在的危害。在本文中,我们对LLM中的公平性的相关研究进行了全面的综述。首先,对于中等规模LLM,我们分别从内在偏差和外在偏差的角度介绍了评估指标和去偏方法。然后,对于大规模LLM,我们介绍了最近的公平性研究,包括公平性评估、偏差原因和去偏差方法。最后,我们讨论并深入了解LLM公平发展的挑战和未来方向。

1 引言

2 评估度量

3 内在去偏

4 外部去偏

5 大型LLM的公平性

6 讨论

7 结论

我们对LLM中的公平性问题进行了全面的调查。社会偏见主要来源于包含有害信息和不平衡数据的训练数据,可分为内在偏见和外在偏见。我们总结了LLM的公平性研究,包括中等规模LLM的内在和外在评估指标和去偏策略,以及大规模LLM的公正性评估、偏误原因和去偏方法。此外,我们还讨论了LLM公平性发展中的挑战以及参与者可以努力的研究方向。本次调查的结论是,当前LLM的公平性研究仍需在评估偏差、偏差来源和去偏差策略方面加强。特别是对于仍处于早期阶段的大规模LLM的公平性,从业者应该结合更多的技术,构建全面、安全的语言模型系统。

相关推荐
半问6 小时前
Vibecoding:想法行不行,做出来看看
人工智能·程序人生·ai·产品运营·互联网
张3蜂6 小时前
Python pip 命令完全指南:从入门到精通
人工智能·python·pip
人工智能AI酱6 小时前
【AI深究】高斯混合模型(GMM)全网最详细全流程详解与案例(附Python代码演示) | 混合模型概率密度函数、多元高斯分布概率密度函数、期望最大化(EM)算法 | 实际案例与流程 | 优、缺点分析
人工智能·python·算法·机器学习·分类·回归·聚类
Piar1231sdafa6 小时前
深度学习目标检测算法之YOLOv26加拿大鹅检测
深度学习·算法·目标检测
我是小疯子666 小时前
HybridA*算法:高效路径规划核心解析
人工智能·算法·机器学习
晨非辰6 小时前
【数据结构入坑指南(三.1)】--《面试必看:单链表与顺序表之争,读懂“不连续”之美背后的算法思想》
数据结构·c++·人工智能·深度学习·算法·机器学习·面试
草莓熊Lotso6 小时前
《算法闯关指南:优选算法--滑动窗口》--15.串联所有单词的子串,16.最小覆盖子串
开发语言·c++·人工智能·算法
阿里-于怀6 小时前
Dify 官方上架 Higress 插件,轻松接入 AI 网关访问模型服务
网络·人工智能·ai·dify·higress
AI周红伟6 小时前
周红伟:智能体构建,《企业智能体构建-DIFY+COZE+Skills+RAG和Agent能体构建案例实操》
大数据·人工智能
!chen6 小时前
引入AI辅助的3D游戏美术工作流
人工智能·3d·游戏美术