数据治理-数据仓库和商务智能-部分内容

数据仓库建设应遵循原则

  1. 聚焦业务目标,用于最优级的业务并解决它;
  2. 以终为始,以业务优先级和最终成果驱动仓库创建;
  3. 全局性的思考和设计,局部性的行动和建设;
  4. 总结并持续优化,而不是一开始就这样做;
  5. 提升透明度和自助服务;
  6. 与数据仓库一起建立元数据,DW的成功关键是能准确解释数据;
  7. 协同,与其他数据活动协作,尤其是数据治理、数据质量和元数据管理活动;
  8. 不要千篇一律。为每种数据消费者提供正确的工具和产品。

数据仓库建设目标

  1. 支持商务智能活动;
  2. 赋能商业分析和高效决策;
  3. 基于数据洞察寻找创新方法。
相关推荐
Allen_LVyingbo14 分钟前
医院大数据平台建设:基于快速流程化工具集的考察
大数据·网络·人工智能·健康医疗
jiejianyun85726 分钟前
零售小程序怎么自己搭建?开个小卖铺如何留住客户?
大数据
qq_254674411 小时前
数据仓库和数据湖 数据仓库和数据库
数据库·数据仓库
web135085886352 小时前
9. 大数据集群(PySpark)+Hive+MySQL+PyEcharts+Flask:信用贷款风险分析与预测
大数据·hive·mysql
神秘打工猴10 小时前
Flink 集群有哪些⻆⾊?各⾃有什么作⽤?
大数据·flink
小刘鸭!10 小时前
Flink的三种时间语义
大数据·flink
天冬忘忧10 小时前
Flink优化----FlinkSQL 调优
大数据·sql·flink
LinkTime_Cloud10 小时前
GitLab 将停止为中国区用户提供服务,60天迁移期如何应对? | LeetTalk Daily
大数据·运维·gitlab
寒暄喆意11 小时前
智慧农业物联网传感器:开启农业新时代
大数据·人工智能·科技·物联网
m0_5485030311 小时前
Flink基本原理 + WebUI说明 + 常见问题分析
大数据·flink