数据治理-数据仓库和商务智能-部分内容

数据仓库建设应遵循原则

  1. 聚焦业务目标,用于最优级的业务并解决它;
  2. 以终为始,以业务优先级和最终成果驱动仓库创建;
  3. 全局性的思考和设计,局部性的行动和建设;
  4. 总结并持续优化,而不是一开始就这样做;
  5. 提升透明度和自助服务;
  6. 与数据仓库一起建立元数据,DW的成功关键是能准确解释数据;
  7. 协同,与其他数据活动协作,尤其是数据治理、数据质量和元数据管理活动;
  8. 不要千篇一律。为每种数据消费者提供正确的工具和产品。

数据仓库建设目标

  1. 支持商务智能活动;
  2. 赋能商业分析和高效决策;
  3. 基于数据洞察寻找创新方法。
相关推荐
Hy行者勇哥41 分钟前
公司全场景运营中 PPT 的类型、功能与作用详解
大数据·人工智能
liliangcsdn1 小时前
如何基于ElasticsearchRetriever构建RAG系统
大数据·elasticsearch·langchain
乐迪信息1 小时前
乐迪信息:基于AI算法的煤矿作业人员安全规范智能监测与预警系统
大数据·人工智能·算法·安全·视觉检测·推荐算法
极验1 小时前
iPhone17实体卡槽消失?eSIM 普及下的安全挑战与应对
大数据·运维·安全
B站_计算机毕业设计之家2 小时前
推荐系统实战:python新能源汽车智能推荐(两种协同过滤+Django 全栈项目 源码)计算机专业✅
大数据·python·django·汽车·推荐系统·新能源·新能源汽车
The Sheep 20233 小时前
WPF自定义路由事件
大数据·hadoop·wpf
SelectDB技术团队3 小时前
Apache Doris 内部数据裁剪与过滤机制的实现原理 | Deep Dive
大数据·数据库·apache·数据库系统·数据裁剪
WLJT1231231234 小时前
科技赋能塞上农业:宁夏从黄土地到绿硅谷的蝶变
大数据·人工智能·科技
B站_计算机毕业设计之家7 小时前
大数据实战:Python+Flask 汽车数据分析可视化系统(爬虫+线性回归预测+推荐 源码+文档)✅
大数据·python·数据分析·flask·汽车·线性回归·预测