PyG-GCN-Cora(在Cora数据集上应用GCN做节点分类)

文章目录

model.py

py 复制代码
import torch.nn as nn
from torch_geometric.nn import GCNConv
import torch.nn.functional as F
class gcn_cls(nn.Module):
    def __init__(self,in_dim,hid_dim,out_dim,dropout_size=0.5):
        super(gcn_cls,self).__init__()
        self.conv1 = GCNConv(in_dim,hid_dim)
        self.conv2 = GCNConv(hid_dim,hid_dim)
        self.fc = nn.Linear(hid_dim,out_dim)
        self.relu  = nn.ReLU()
        self.dropout_size = dropout_size
    def forward(self,x,edge_index):
        x = self.conv1(x,edge_index)
        x = F.dropout(x,p=self.dropout_size,training=self.training)
        x = self.relu(x)
        x = self.conv2(x,edge_index)
        x = self.relu(x)
        x = self.fc(x)
        return x

main.py

py 复制代码
import torch
import torch.nn as nn
from torch_geometric.datasets import Planetoid
from model import gcn_cls
import torch.optim as optim
dataset = Planetoid(root='./data/Cora', name='Cora')
print(dataset[0])
cora_data = dataset[0]

epochs = 50
lr = 1e-3
weight_decay = 5e-3
momentum = 0.5
hidden_dim = 128
output_dim = 7

net = gcn_cls(cora_data.x.shape[1],hidden_dim,output_dim)
optimizer = optim.AdamW(net.parameters(),lr=lr,weight_decay=weight_decay)
#optimizer = optim.SGD(net.parameters(),lr = lr,momentum=momentum)
criterion = nn.CrossEntropyLoss()
print("****************Begin Training****************")
net.train()
for epoch in range(epochs):
    out = net(cora_data.x,cora_data.edge_index)
    optimizer.zero_grad()
    loss_train = criterion(out[cora_data.train_mask],cora_data.y[cora_data.train_mask])
    loss_val   = criterion(out[cora_data.val_mask],cora_data.y[cora_data.val_mask])
    loss_train.backward()
    print('epoch',epoch+1,'loss-train {:.2f}'.format(loss_train),'loss-val {:.2f}'.format(loss_val))
    optimizer.step()

net.eval()
out = net(cora_data.x,cora_data.edge_index)
loss_test = criterion(out[cora_data.test_mask],cora_data.y[cora_data.test_mask])
_,pred = torch.max(out,dim=1)
pred_label = pred[cora_data.test_mask]
true_label = cora_data.y[cora_data.test_mask]
acc = sum(pred_label==true_label)/len(pred_label)
print("****************Begin Testing****************")
print('loss-test {:.2f}'.format(loss_test),'acc {:.2f}'.format(acc))

参数设置

bash 复制代码
epochs = 50
lr = 1e-3
weight_decay = 5e-3
momentum = 0.5
hidden_dim = 128
output_dim = 7

output_dim是输出维度,也就是有多少可能的类别。

注意事项

1.发现loss不下降:

建议改一改lr(学习率),我做的时候开始用的SGD,学习率设的0.01发现loss不下降,改成0.1后好了很多。如果用AdamW,0.001(1e-3)基本就够用了

运行图

相关推荐
gptplus17 分钟前
【重要通知】ChatGPT Plus将于9月16日调整全球充值定价,低价区将被弃用,开发者如何应对?
人工智能·gpt·chatgpt
亚里随笔20 分钟前
小型语言模型:智能体AI的未来?
人工智能·语言模型·自然语言处理·llm·rlhf·agentic
mit6.82421 分钟前
[code-review] AI聊天接口 | 语言模型通信器
人工智能·语言模型·代码复审
Zero_to_zero12341 小时前
NVSpeech_170k 数据集音频提取处理
人工智能·音视频
聚集的流星2 小时前
大模型提示词工程调优
人工智能
东方佑2 小时前
从音频到Token:构建原神角色语音识别模型的完整实践
人工智能·音视频·语音识别
dlraba8022 小时前
基于 OpenCV 与 SIFT 算法的指纹识别系统实现:从匹配到可视化
人工智能·opencv·计算机视觉
shizidushu3 小时前
Hugging Face NLP课程学习记录 - 3. 微调一个预训练模型
人工智能·学习·自然语言处理·微调·huggingface
格林威3 小时前
机器视觉在半导体制造中有哪些检测应用
人工智能·数码相机·yolo·计算机视觉·视觉检测·制造·相机
月岛雫-3 小时前
“单标签/多标签” vs “二分类/多分类”
人工智能·分类·数据挖掘