PyG-GCN-Cora(在Cora数据集上应用GCN做节点分类)

文章目录

model.py

py 复制代码
import torch.nn as nn
from torch_geometric.nn import GCNConv
import torch.nn.functional as F
class gcn_cls(nn.Module):
    def __init__(self,in_dim,hid_dim,out_dim,dropout_size=0.5):
        super(gcn_cls,self).__init__()
        self.conv1 = GCNConv(in_dim,hid_dim)
        self.conv2 = GCNConv(hid_dim,hid_dim)
        self.fc = nn.Linear(hid_dim,out_dim)
        self.relu  = nn.ReLU()
        self.dropout_size = dropout_size
    def forward(self,x,edge_index):
        x = self.conv1(x,edge_index)
        x = F.dropout(x,p=self.dropout_size,training=self.training)
        x = self.relu(x)
        x = self.conv2(x,edge_index)
        x = self.relu(x)
        x = self.fc(x)
        return x

main.py

py 复制代码
import torch
import torch.nn as nn
from torch_geometric.datasets import Planetoid
from model import gcn_cls
import torch.optim as optim
dataset = Planetoid(root='./data/Cora', name='Cora')
print(dataset[0])
cora_data = dataset[0]

epochs = 50
lr = 1e-3
weight_decay = 5e-3
momentum = 0.5
hidden_dim = 128
output_dim = 7

net = gcn_cls(cora_data.x.shape[1],hidden_dim,output_dim)
optimizer = optim.AdamW(net.parameters(),lr=lr,weight_decay=weight_decay)
#optimizer = optim.SGD(net.parameters(),lr = lr,momentum=momentum)
criterion = nn.CrossEntropyLoss()
print("****************Begin Training****************")
net.train()
for epoch in range(epochs):
    out = net(cora_data.x,cora_data.edge_index)
    optimizer.zero_grad()
    loss_train = criterion(out[cora_data.train_mask],cora_data.y[cora_data.train_mask])
    loss_val   = criterion(out[cora_data.val_mask],cora_data.y[cora_data.val_mask])
    loss_train.backward()
    print('epoch',epoch+1,'loss-train {:.2f}'.format(loss_train),'loss-val {:.2f}'.format(loss_val))
    optimizer.step()

net.eval()
out = net(cora_data.x,cora_data.edge_index)
loss_test = criterion(out[cora_data.test_mask],cora_data.y[cora_data.test_mask])
_,pred = torch.max(out,dim=1)
pred_label = pred[cora_data.test_mask]
true_label = cora_data.y[cora_data.test_mask]
acc = sum(pred_label==true_label)/len(pred_label)
print("****************Begin Testing****************")
print('loss-test {:.2f}'.format(loss_test),'acc {:.2f}'.format(acc))

参数设置

bash 复制代码
epochs = 50
lr = 1e-3
weight_decay = 5e-3
momentum = 0.5
hidden_dim = 128
output_dim = 7

output_dim是输出维度,也就是有多少可能的类别。

注意事项

1.发现loss不下降:

建议改一改lr(学习率),我做的时候开始用的SGD,学习率设的0.01发现loss不下降,改成0.1后好了很多。如果用AdamW,0.001(1e-3)基本就够用了

运行图

相关推荐
yuruizai1102 分钟前
netty十八罗汉之——挖耳罗汉(Decoder)
java·人工智能·netty
Matrix_112 分钟前
论文阅读:Non-parametric Sensor Noise Modeling and Synthesis
论文阅读·人工智能·计算摄影
带娃的IT创业者1 小时前
《AI大模型趣味实战》第10集:开发一个基于Mermaid的AI绘图网站
人工智能·pytorch·深度学习·ai·flask
9命怪猫2 小时前
AI大模型-提示工程学习笔记15—主动提示 (Active Prompt)
人工智能·机器学习·ai·prompt
KubeSphere 云原生2 小时前
云原生周刊:云原生和 AI
人工智能·云原生
红色的山茶花3 小时前
YOLOv11-ultralytics-8.3.67部分代码阅读笔记-split_dota.py
笔记·深度学习·yolo
SuasyYi3 小时前
【深度学习】Transformer 的常见的位置编码有哪些
人工智能·python·深度学习·语言模型·transformer
脑洞专家4 小时前
角点检测算法各自优缺点
人工智能·算法·计算机视觉
高桐@BILL5 小时前
本地部署AI模型 --- DeepSeek(二)---更新中
人工智能
玩电脑的辣条哥6 小时前
动态记忆网络 DeepMind的MEMO架构允许在推理时动态读写记忆矩阵,记忆容量提升40倍
人工智能