【机器学习】文本多分类

声明:这只是浅显的一个小试验,且借助了AI。使用的是jupyter notebook,所以代码是一块一块,从上往下执行的

知识点:正则 删除除数字和字母外的所有字符、 高频词云、混淆矩阵

参考: 使用python和sklearn的中文文本多分类实战开发_文本多标签分类 用二分类器做 python 数据集中文_-派神-的博客-CSDN博客


数据【免费】初步的文本多分类小实验资源-CSDN文库

数据介绍:训练集train.csv中有120000条数据,测试集test.csv中有7600条数据。两个文件中记录的是新闻,均只有3列,第1列记录了新闻的种类(world,sports,sci/Tech,Business,记录与class.txt中),总共有4类[3,4,2,1],且每一类的占比均为25%;第2列记录了新闻标题,第3列记录了新闻的大致内容。

数据总体情况

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import re # 正则匹配
plt.rcParams['font.sans-serif'] = ['STKaiTi']
plt.rcParams['axes.unicode_minus']=False

# 数据的情况
dfTrain = pd.read_csv('train.csv',header = None)
dfTest = pd.read_csv('test.csv',header = None)
print(f'训练集数据量:{len(dfTrain)}')
print(f'测试集数据量:{len(dfTest)}')
print(f'数据:{dfTrain.head(4)}')

数据预处理

空值与重复值

没有空值与重复值

python 复制代码
# 检查是否有空值
print(f'数据情况{dfTrain.info()}')
print(f'第1列空值:{dfTrain.iloc[0].isnull().sum()}')
print(f'第2列空值:{dfTrain.iloc[1].isnull().sum()}')
print(f'第3列空值:{dfTrain.iloc[2].isnull().sum()}')
# 重复值分析与处理
print(f'重复值:{dfTrain.duplicated(keep=False).sum()}')

重命名列名

由于数据中没有列名,所以,读取的时候header=None(见第一段pd.read_csv),为了操作的方便,添加列名['category','title','content']。

python 复制代码
# 列重命名
dfTrain.columns = ['category','title','content']
dfTest.columns = ['category','title','content']

删除除数字和英文的所有字符

为了展示出高频词的词云以及后续的处理,这里使用正则表达式删除数据中第2、3列中除数字和字母外的所有字符,且各词汇之间采用空格切分。

python 复制代码
# 在a-z A-Z 0-9范围外的字符替换为空格字符
def remove_punctuation(text):
    cleaned_text = re.sub(r'[^a-zA-Z0-9]', ' ', text)
    return cleaned_text
# 删除除数字和英文的所有字符
dfTrain['title'] = dfTrain['title'].apply(remove_punctuation)
dfTest['title'] = dfTest['title'].apply(remove_punctuation)
dfTrain['content'] = dfTrain['content'].apply(remove_punctuation)
dfTest['content'] = dfTest['content'].apply(remove_punctuation)

补充

我这个试验只采用了第2列title的内容,没有用第3列content 里的内容,预测精度会有所下降。

这里呢其实还是可以有其他操作的。比如将第2列和第3列合并成新的一列 ,然后用新的一列作为输入。还可以删除英文里面的停用词,减少无意义的高频词。

不同分类对数据进行可视化

python 复制代码
# 训练集种类
print(f'种类:{dfTrain.iloc[:,0].unique()}')
# 训练集各类别数据量
d= {'类别':dfTrain['category'].value_counts().index,'数量':dfTrain['category'].value_counts()}
Num = pd.DataFrame(data = d).reset_index(drop = True)

# 柱状图
plt.figure(1,figsize = (10,6),dpi = 400)
plt.title('训练集类别数据量',fontsize = 15)  # 标题
labels = ['World','Sports','Business','Sci/Tech']
colors = ['skyblue', 'green', 'orange','red']
plt.bar(labels,Num['数量'], width=0.6,color=colors)
# 添加数据标签
for i in range(len(Num)):
    plt.text(labels[i], Num['数量'][i]+0.01, f'{Num["数量"][i]}', ha='center',rotation = 0,fontsize = 15)

plt.xlabel('种类',fontsize = 15)
plt.ylabel('数量',fontsize = 15)
plt.show()


# 测试集种类
print(f'种类:{dfTest.iloc[:,0].unique()}')
# 测试集各类别数据量
d2= {'类别':dfTest['category'].value_counts().index,'数量':dfTest['category'].value_counts()}
Num2 = pd.DataFrame(data = d2).reset_index(drop = True)


# 柱状图
plt.figure(2,figsize = (10,6),dpi = 400)
plt.title('测试集类别数据量',fontsize = 15)  # 标题
labels = ['World','Sports','Business','Sci/Tech']
colors = ['skyblue', 'green', 'orange','red']
plt.bar(labels,Num2['数量'], width=0.6,color=colors)
# plt.xlabel(Num['类别'])
# 添加数据标签
for i in range(len(Num2)):
    plt.text(labels[i], Num2['数量'][i]+0.05, f'{Num2["数量"][i]}', ha='center',rotation = 0,fontsize = 15)
plt.xlabel('种类',fontsize = 15)
plt.ylabel('数量',fontsize = 15)
plt.show()

高频词词云

画出训练集中,4种分类的新闻标题的top10的高频词云,需要借助wordcloud库

python 复制代码
import pandas as pd
import matplotlib.pyplot as plt
from wordcloud import WordCloud
from collections import defaultdict

# 创建一个存储每个类别文本的字典
category_text = defaultdict(str)

# 将每个类别的文本合并到对应的字典项中
for category, sentence in zip(dfTrain['category'], dfTrain['title']):
    category_text[category] += sentence + ' '

# 生成词云图像并绘制
for category, text in category_text.items():
    wordcloud = WordCloud(width=800, height=400,max_words=10, background_color="white").generate(text)
    plt.figure(figsize=(10, 5))
    plt.imshow(wordcloud, interpolation="bilinear")
    plt.title(f'Word Cloud for Category {category}',fontsize = 30)
    plt.axis("off")
    plt.show()

根据我们事先的得知的数字与类别的对应关系:1-World,2-Sports,3-Business,4-Sci/Tech,观察每种类别的高频词云图,可以看出对于world,常出现诸如Iraq、US等国家名称,对于Sports类,常出现Win,Game等相关词汇,对于Business类,常出现deal,oil,price等相关词汇,对于Sci/Tech类,常出现MicroSoft,Intel等相关词汇。因此,每一类的高频词云是符合当前类的特征的。

模型预测

思路:为了能使模型能够对文本进行预测,首先需要使用TF-IDF向量化器进行文本特征提取(至于原理什么的,我不知道,AI生成的)。然后再次基础上借助预测模型进行多分类预测,在训练集中训练,测试集中测试

使用朴素贝叶斯

python 复制代码
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import accuracy_score, classification_report

# 划分x,y
X_train = dfTrain['title']
X_test = dfTest['title']
y_train  = dfTrain['category']
y_test  = dfTest['category']
# 文本特征提取,使用词袋模型
vectorizer = CountVectorizer()
X_train_vec = vectorizer.fit_transform(X_train)
X_test_vec = vectorizer.transform(X_test)
# 训练朴素贝叶斯分类器
clf = MultinomialNB()
clf.fit(X_train_vec, y_train)
# 预测
y_pred = clf.predict(X_test_vec)
# 评估模型性能
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy:.2f}')
# 输出分类报告
print(classification_report(y_test, y_pred))

下图为朴素贝叶斯的预测结果,总体的预测准确率为0.87。但是对于不同类别的预测效果也不同,可以看出朴素贝叶斯对类别2的预测效果最好的,精确度、召回率、f1分数均能达到0.9以上

画出混淆矩阵

python 复制代码
from sklearn.metrics import confusion_matrix
import seaborn as sns

# 计算混淆矩阵
conf_matrix = confusion_matrix(y_test, y_pred)

# 绘制混淆矩阵
plt.figure(figsize=(8, 6),dpi = 400)
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=clf.classes_, yticklabels=clf.classes_)
plt.xlabel('预测')
plt.ylabel('实际')
plt.title('混淆矩阵')
plt.show()

下图为朴素贝叶斯预测的混淆矩阵。可以看出对于朴素贝叶斯模型来说,容易将第1类错误预测为第3类,第2类错误预测为第1类,第3类错误预测为第1、4类,第4类错误预测为第3类。

相关推荐
dundunmm3 分钟前
论文阅读:SIMBA: single-cell embedding along with features
论文阅读·人工智能·数据挖掘·embedding·生物信息·多组学细胞数据·单组学
xhyu615 分钟前
【论文笔记】LLaVA-KD: A Framework of Distilling Multimodal Large Language Models
论文阅读·人工智能·语言模型
数据岛5 分钟前
sklearn中常用数据集简介
人工智能·python·sklearn
黎跃春29 分钟前
智能体来了:构建用于具有结构化输出的内容审核的智能 AI Agent 智能体
人工智能·搜索引擎
美狐美颜sdk41 分钟前
从零开始:如何使用第三方视频美颜SDK开发实时直播美颜平台
人工智能·计算机视觉·性能优化·美颜sdk·第三方美颜sdk·美颜api
CSDN专家-赖老师(软件之家)1 小时前
养老院管理系统+小程序项目需求分析文档
vue.js·人工智能·小程序·mybatis·springboot
emperinter1 小时前
WordCloudStudio Now Supports AliPay for Subscriptions !
人工智能·macos·ios·信息可视化·中文分词
南门听露2 小时前
无监督跨域目标检测的语义一致性知识转移
人工智能·目标检测·计算机视觉
夏沫の梦2 小时前
常见LLM大模型概览与详解
人工智能·深度学习·chatgpt·llama
WeeJot嵌入式2 小时前
线性代数与数据挖掘:人工智能中的核心工具
人工智能·线性代数·数据挖掘