pytorch生成CAM热力图-单张图像

利用ImageNet预训练模型生成CAM热力图-单张图像

代码和图片等资源均来源于哔哩哔哩up主:同济子豪兄

讲解视频:CAM可解释性分析-算法讲解

一、环境搭建

1,安装所需的包

bash 复制代码
pip install numpy pandas matplotlib requests tqdm opencv-python pillow -i https://pypi.tuna.tsinghua.edu.cn/simple

2,安装 Pytorch

bash 复制代码
pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113

3,安装 mmcv-full

bash 复制代码
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.10.0/index.html

4,下载中文字体文件(用于显示和打印汉字文字)

bash 复制代码
wget https://zihao-openmmlab.obs.cn-east-3.myhuaweicloud.com/20220716-mmclassification/dataset/SimHei.ttf

5,下载 ImageNet 1000类别信息

bash 复制代码
wget https://zihao-openmmlab.obs.cn-east-3.myhuaweicloud.com/20220716-mmclassification/dataset/meta_data/imagenet_class_index.csv

6,创建 test_img 文件夹,并下载测试图像到该文件夹

bash 复制代码
import os
os.mkdir('test_img')

wget https://zihao-openmmlab.obs.cn-east-3.myhuaweicloud.com/20220716-mmclassification/test/border-collie.jpg -P test_img
wget https://zihao-openmmlab.obs.cn-east-3.myhuaweicloud.com/20220716-mmclassification/test/cat_dog.jpg -P test_img
wget https://zihao-openmmlab.obs.cn-east-3.myhuaweicloud.com/20220716-mmclassification/test/0818/room_video.mp4 -P test_img

7,下载安装 torchcam

bash 复制代码
git clone https://github.com/frgfm/torch-cam.git
pip install -e torch-cam/.

二、主要代码

python 复制代码
from PIL import Image

import torch
# 有 GPU 就用 GPU,没有就用 CPU
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print('device', device)

# 导入ImageNet预训练模型
from torchvision.models import resnet18
model = resnet18(pretrained=True).eval().to(device)

# 导入自己训练的模型
# model = torch.load('自己训练的模型.pth')
# model = model.eval().to(device)

# 可解释性分析方法有:CAM GradCAM GradCAMpp ISCAM LayerCAM SSCAM ScoreCAM SmoothGradCAMpp XGradCAM

# 方法一:导入可解释性分析方法SmoothGradCAMpp
# from torchcam.methods import SmoothGradCAMpp 
# cam_extractor = SmoothGradCAMpp(model)

# 方法二:导入可解释性分析方法GradCAM
from torchcam.methods import GradCAM
target_layer = model.layer4[-1]    # 选择目标层
cam_extractor = GradCAM(model, target_layer)

# 图片预处理
from torchvision import transforms
# 测试集图像预处理-RCTN:缩放、裁剪、转 Tensor、归一化
test_transform = transforms.Compose([transforms.Resize(256),
                                     transforms.CenterCrop(224),
                                     transforms.ToTensor(),
                                     transforms.Normalize(
                                         mean=[0.485, 0.456, 0.406], 
                                         std=[0.229, 0.224, 0.225])
                                    ])

# 图片分类预测
img_path = 'test_img/border-collie.jpg'
img_pil = Image.open(img_path)
input_tensor = test_transform(img_pil).unsqueeze(0).to(device) # 预处理
pred_logits = model(input_tensor)
# topk()方法用于返回输入数据中特定维度上的前k个最大的元素
pred_top1 = torch.topk(pred_logits, 1)
# pred_id 为图片所属分类对应的索引号,分类和索引号存储在imagenet_class_index.csv
pred_id = pred_top1[1].detach().cpu().numpy().squeeze().item()

# 生成可解释性分析热力图
activation_map = cam_extractor(pred_id, pred_logits)
activation_map = activation_map[0][0].detach().cpu().numpy()

# 可视化
from torchcam.utils import overlay_mask

# overlay_mask 用于构建透明的叠加层
# fromarray 实现array到image的转换
result = overlay_mask(img_pil, Image.fromarray(activation_map), alpha=0.7)

# 为图片添加中文类别显示

# 载入ImageNet 1000 类别中文释义
import pandas as pd
df = pd.read_csv('imagenet_class_index.csv')
idx_to_labels = {}
idx_to_labels_cn = {}
for idx, row in df.iterrows():
    idx_to_labels[row['ID']] = row['class']
    idx_to_labels_cn[row['ID']] = row['Chinese']

# 显示所有中文类别
# idx_to_labels_cn

# 可视化热力图的类别ID,如果为 None,则为置信度最高的预测类别ID
# show_class_id = 231		# 例如 牧羊犬:231 虎猫:281
show_class_id = None

# 可视化热力图的类别ID,如果不指定,则为置信度最高的预测类别ID
if show_class_id:
    show_id = show_class_id
else:
    show_id = pred_id
    show_class_id = pred_id

# 是否显示中文类别
Chinese = True
# Chinese = False

from PIL import ImageDraw
# 在图像上写字
draw = ImageDraw.Draw(result)

if Chinese:
    # 在图像上写中文
    text_pred = 'Pred Class: {}'.format(idx_to_labels_cn[pred_id])
    text_show = 'Show Class: {}'.format(idx_to_labels_cn[show_class_id])
else:
    # 在图像上写英文
    text_pred = 'Pred Class: {}'.format(idx_to_labels[pred_id])
    text_show = 'Show Class: {}'.format(idx_to_labels[show_class_id])

from PIL import ImageFont, ImageDraw
# 导入中文字体,指定字体大小
font = ImageFont.truetype('SimHei.ttf', 30)

# 文字坐标,中文字符串,字体,rgba颜色
draw.text((10, 10), text_pred, font=font, fill=(255, 0, 0, 1))
draw.text((10, 50), text_show, font=font, fill=(255, 0, 0, 1))

#输出结果图
result

注意:

  1. 可解释性方法的选择有多种,代码中提供了 SmoothGradCAMpp 和 GradCAM 两种方法;
  2. 模型选择也有pytorch预训练模型和自己训练的模型两种,代码中演示了 ImageNet图像分类 模型,图片类别文件为 imagenet_class_index.csv;若为自己的模型则还需要修改 "为图片载入类别的部分代码"

三、结果展示


相关推荐
聆风吟º19 分钟前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
User_芊芊君子29 分钟前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能1 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
人工不智能5771 小时前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert
h64648564h2 小时前
CANN 性能剖析与调优全指南:从 Profiling 到 Kernel 级优化
人工智能·深度学习
心疼你的一切2 小时前
解密CANN仓库:AIGC的算力底座、关键应用与API实战解析
数据仓库·深度学习·aigc·cann
光泽雨3 小时前
检测阈值 匹配阈值分析 金字塔
图像处理·人工智能·计算机视觉·机器视觉·smart3
sali-tec3 小时前
C# 基于OpenCv的视觉工作流-章22-Harris角点
图像处理·人工智能·opencv·算法·计算机视觉
学电子她就能回来吗4 小时前
深度学习速成:损失函数与反向传播
人工智能·深度学习·学习·计算机视觉·github
Coder_Boy_4 小时前
TensorFlow小白科普
人工智能·深度学习·tensorflow·neo4j