pytorch生成CAM热力图-单张图像

利用ImageNet预训练模型生成CAM热力图-单张图像

代码和图片等资源均来源于哔哩哔哩up主:同济子豪兄

讲解视频:CAM可解释性分析-算法讲解

一、环境搭建

1,安装所需的包

bash 复制代码
pip install numpy pandas matplotlib requests tqdm opencv-python pillow -i https://pypi.tuna.tsinghua.edu.cn/simple

2,安装 Pytorch

bash 复制代码
pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113

3,安装 mmcv-full

bash 复制代码
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.10.0/index.html

4,下载中文字体文件(用于显示和打印汉字文字)

bash 复制代码
wget https://zihao-openmmlab.obs.cn-east-3.myhuaweicloud.com/20220716-mmclassification/dataset/SimHei.ttf

5,下载 ImageNet 1000类别信息

bash 复制代码
wget https://zihao-openmmlab.obs.cn-east-3.myhuaweicloud.com/20220716-mmclassification/dataset/meta_data/imagenet_class_index.csv

6,创建 test_img 文件夹,并下载测试图像到该文件夹

bash 复制代码
import os
os.mkdir('test_img')

wget https://zihao-openmmlab.obs.cn-east-3.myhuaweicloud.com/20220716-mmclassification/test/border-collie.jpg -P test_img
wget https://zihao-openmmlab.obs.cn-east-3.myhuaweicloud.com/20220716-mmclassification/test/cat_dog.jpg -P test_img
wget https://zihao-openmmlab.obs.cn-east-3.myhuaweicloud.com/20220716-mmclassification/test/0818/room_video.mp4 -P test_img

7,下载安装 torchcam

bash 复制代码
git clone https://github.com/frgfm/torch-cam.git
pip install -e torch-cam/.

二、主要代码

python 复制代码
from PIL import Image

import torch
# 有 GPU 就用 GPU,没有就用 CPU
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print('device', device)

# 导入ImageNet预训练模型
from torchvision.models import resnet18
model = resnet18(pretrained=True).eval().to(device)

# 导入自己训练的模型
# model = torch.load('自己训练的模型.pth')
# model = model.eval().to(device)

# 可解释性分析方法有:CAM GradCAM GradCAMpp ISCAM LayerCAM SSCAM ScoreCAM SmoothGradCAMpp XGradCAM

# 方法一:导入可解释性分析方法SmoothGradCAMpp
# from torchcam.methods import SmoothGradCAMpp 
# cam_extractor = SmoothGradCAMpp(model)

# 方法二:导入可解释性分析方法GradCAM
from torchcam.methods import GradCAM
target_layer = model.layer4[-1]    # 选择目标层
cam_extractor = GradCAM(model, target_layer)

# 图片预处理
from torchvision import transforms
# 测试集图像预处理-RCTN:缩放、裁剪、转 Tensor、归一化
test_transform = transforms.Compose([transforms.Resize(256),
                                     transforms.CenterCrop(224),
                                     transforms.ToTensor(),
                                     transforms.Normalize(
                                         mean=[0.485, 0.456, 0.406], 
                                         std=[0.229, 0.224, 0.225])
                                    ])

# 图片分类预测
img_path = 'test_img/border-collie.jpg'
img_pil = Image.open(img_path)
input_tensor = test_transform(img_pil).unsqueeze(0).to(device) # 预处理
pred_logits = model(input_tensor)
# topk()方法用于返回输入数据中特定维度上的前k个最大的元素
pred_top1 = torch.topk(pred_logits, 1)
# pred_id 为图片所属分类对应的索引号,分类和索引号存储在imagenet_class_index.csv
pred_id = pred_top1[1].detach().cpu().numpy().squeeze().item()

# 生成可解释性分析热力图
activation_map = cam_extractor(pred_id, pred_logits)
activation_map = activation_map[0][0].detach().cpu().numpy()

# 可视化
from torchcam.utils import overlay_mask

# overlay_mask 用于构建透明的叠加层
# fromarray 实现array到image的转换
result = overlay_mask(img_pil, Image.fromarray(activation_map), alpha=0.7)

# 为图片添加中文类别显示

# 载入ImageNet 1000 类别中文释义
import pandas as pd
df = pd.read_csv('imagenet_class_index.csv')
idx_to_labels = {}
idx_to_labels_cn = {}
for idx, row in df.iterrows():
    idx_to_labels[row['ID']] = row['class']
    idx_to_labels_cn[row['ID']] = row['Chinese']

# 显示所有中文类别
# idx_to_labels_cn

# 可视化热力图的类别ID,如果为 None,则为置信度最高的预测类别ID
# show_class_id = 231		# 例如 牧羊犬:231 虎猫:281
show_class_id = None

# 可视化热力图的类别ID,如果不指定,则为置信度最高的预测类别ID
if show_class_id:
    show_id = show_class_id
else:
    show_id = pred_id
    show_class_id = pred_id

# 是否显示中文类别
Chinese = True
# Chinese = False

from PIL import ImageDraw
# 在图像上写字
draw = ImageDraw.Draw(result)

if Chinese:
    # 在图像上写中文
    text_pred = 'Pred Class: {}'.format(idx_to_labels_cn[pred_id])
    text_show = 'Show Class: {}'.format(idx_to_labels_cn[show_class_id])
else:
    # 在图像上写英文
    text_pred = 'Pred Class: {}'.format(idx_to_labels[pred_id])
    text_show = 'Show Class: {}'.format(idx_to_labels[show_class_id])

from PIL import ImageFont, ImageDraw
# 导入中文字体,指定字体大小
font = ImageFont.truetype('SimHei.ttf', 30)

# 文字坐标,中文字符串,字体,rgba颜色
draw.text((10, 10), text_pred, font=font, fill=(255, 0, 0, 1))
draw.text((10, 50), text_show, font=font, fill=(255, 0, 0, 1))

#输出结果图
result

注意:

  1. 可解释性方法的选择有多种,代码中提供了 SmoothGradCAMpp 和 GradCAM 两种方法;
  2. 模型选择也有pytorch预训练模型和自己训练的模型两种,代码中演示了 ImageNet图像分类 模型,图片类别文件为 imagenet_class_index.csv;若为自己的模型则还需要修改 "为图片载入类别的部分代码"

三、结果展示


相关推荐
啊阿狸不会拉杆14 分钟前
《机器学习》第五章-集成学习(Bagging/Boosting)
人工智能·算法·机器学习·计算机视觉·集成学习·boosting
2501_936146042 小时前
【目标检测】钙钛矿晶体YOLO11-GhostDynamicConv模型改进与实现_1
人工智能·目标检测·计算机视觉
jake don9 小时前
AI 深度学习路线
人工智能·深度学习
bst@微胖子9 小时前
LlamaIndex之核心概念及部署以及入门案例
pytorch·深度学习·机器学习
心态与习惯11 小时前
深度学习中的 seq2seq 模型
人工智能·深度学习·seq2seq
啊阿狸不会拉杆12 小时前
《数字图像处理》第 7 章 - 小波与多分辨率处理
图像处理·人工智能·算法·计算机视觉·数字图像处理
AI即插即用12 小时前
即插即用系列 | CVPR 2025 AmbiSSL:首个注释模糊感知的半监督医学图像分割框架
图像处理·人工智能·深度学习·计算机视觉·视觉检测
Coding茶水间14 小时前
基于深度学习的交通标志检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
开发语言·人工智能·深度学习·yolo·目标检测·机器学习
飞Link14 小时前
【论文笔记】《Deep Learning for Time Series Anomaly Detection: A Survey》
rnn·深度学习·神经网络·cnn·transformer
大模型实验室Lab4AI15 小时前
西北工业大学 StereoMV2D 突破 3D 物体检测深度难题,精度与效率兼得
人工智能·计算机视觉·目标跟踪