【线性代数】

0、线性代数的本质往往被淹没在计算的海洋中,无人问津!

1、什么是向量?

向量是带方向的箭头,向量是坐标。

2、向量的线性组合

两个向量不共线,即线性无关;两个向量共线,即线性相关。

两个不共线的向量张成的空间是二维的,三个不相关的向量张成的空间是三维的,n个不相关的向量是张成的空间是n维的。

n个向量张成的空间如果小于n维,那么这n个向量组成的向量组是线性相关的。

3、矩阵与线性相关

将一个向量进行线性变换,要表述这一变换,需要表示基向量变换后的向量,将坐标写成一个数表,即矩阵,矩阵表示一个线性变换。

矩阵左乘向量表示矩阵将这个向量进行线性变换。

矩阵代表对空间的线性变换,两个矩阵相乘代表对空间进行连续两次的线性变换,优先进行右侧矩阵的线性变换。

4、行列式

一个矩阵的行列式为a,那么代表这个变换将原空间的大小变为了a倍;这里的大小,一维指线的长度,二维指面积,三维指体积,四维指代表空间大小的量。

当行列式值为0时,表示变换后原维度的空间大小变为了0,即空间被降维了。

当行列式值为负数时,其实只是方向不一样而已,若理解上述,这里不足为奇。

5、线性变换与方程组

以3*3的矩阵A代表方程组的系数矩阵,X代表未知数矩阵,V代表等号右侧矩阵。

A*X=V

意义为将X向量进行变换A,变成向量V,所以只需找到A的逆变换,将此逆变换作用在V上,即可得到X。

A为满秩时,可以得到唯一的解X,

当A的秩为2时,那么X将被压在一个平面内,当V也不在这个平面内时,方程组无解;当V在这个平面上时,则能将投影投在这个平面上且与V重合的所有向量都是方程组的解。

6、矩阵的列空间

列向量张成空间的维数。

7、矩阵的零空间

经过矩阵变换后被压缩到原点的向量组成的空间。满秩矩阵只有零向量在变换后是零向量;对于非满秩矩阵,一系列向量在变换后被压缩到原点。

8、克莱姆法则

9、非方阵

变换维度的变换。

10、点积

向量的点乘,可以理解为把一个向量看成1*2的矩阵(二维时),这个矩阵变换另一个向量。

'向量' 是动词 '变换' 的一个名词性表述。

相关推荐
小技工丨35 分钟前
LLaMA-Factory:环境准备
机器学习·大模型·llama·llama-factory
聚客AI2 小时前
ChatGPT到Claude全适配:跨模型Prompt高级设计规范与迁移技巧
人工智能·机器学习·语言模型·自然语言处理·langchain·transformer·llama
小羊Linux客栈2 小时前
自动化:批量文件重命名
运维·人工智能·python·自动化·游戏程序
远瞻。3 小时前
【论文阅读】人脸修复(face restoration ) 不同先验代表算法整理2
论文阅读·算法
先做个垃圾出来………6 小时前
哈夫曼树(Huffman Tree)
数据结构·算法
Mr数据杨6 小时前
【Dv3Admin】插件 dv3admin_chatgpt 集成大语言模型智能模块
人工智能·语言模型·chatgpt
zm-v-159304339866 小时前
AI 赋能 Copula 建模:大语言模型驱动的相关性分析革新
人工智能·语言模型·自然语言处理
九州ip动态7 小时前
自媒体工作室如何矩阵?自媒体矩阵养号策略
线性代数·矩阵·媒体
phoenix@Capricornus7 小时前
反向传播算法——矩阵形式递推公式——ReLU传递函数
算法·机器学习·矩阵
Inverse1628 小时前
C语言_动态内存管理
c语言·数据结构·算法