OpenCV Series : Target Box Outline Border


角点

c 复制代码
P1      [0]     (255, 000, 000)
P2      [1]     (000, 255, 000)
P3      [2]     (000, 000, 255)
P4      [3]     (000, 000, 000)


垂直矩形框

c 复制代码
	rect = cv2.minAreaRect(cnt)
	targetColor = roi_color
	targetThickness = 1
	targetColor = (255, 255, 255)
	if lineVerbose:
		if True:
		   cv2.line(photo,  (x, y), (x+w//4, y), targetColor, targetThickness)
		   cv2.line(photo,  (x, y), (x, y+h//4), targetColor, targetThickness)
		
		   cv2.line(photo,  (x+3*w//4, y), (x+w, y), targetColor, targetThickness)
		   cv2.line(photo,  (x+w, y), (x+w, y+h//4), targetColor, targetThickness)
		
		   cv2.line(photo,  (x, y+h), (x+w//4, y+h), targetColor, targetThickness)
		   cv2.line(photo,  (x, y+h), (x, y+3*h//4), targetColor, targetThickness)
		
		   cv2.line(photo,  (x+w, y+h), (x+3*w//4, y+h), targetColor, targetThickness)
		   cv2.line(photo,  (x+w, y+h), (x+w, y+3*h//4), targetColor, targetThickness)
		
		   crossLength = 15
		   cv2.line(photo,  (x+w//2-crossLength, y+h//2), (x+w//2+crossLength, y+h//2), targetColor, targetThickness)
		   cv2.line(photo,  (x+w//2, y+h//2-crossLength), (x+w//2, y+h//2+crossLength), targetColor, targetThickness)



倾斜矩形框

c 复制代码
def lineByAngle(photo, p1, p2, length, color, thickness):
    slope = 0 + (p2[1] - p1[1]) / (p2[0] - p1[0])
    theta = np.arctan(slope)
    degree = int(theta * 57.29577) % 360

    length = getDistance(p1, p2) // 4

    if (p2[0] < p1[0]):
        pp = (
            int(p1[0] - length * np.cos(theta)),
            int(p1[1] - length * np.sin(theta))
        )
    else:
        pp = (
            int(p1[0] + length * np.cos(theta)),
            int(p1[1] + length * np.sin(theta))
        )
    cv2.line(photo,  p1, pp, color, thickness)


几何关键点

c 复制代码
	if True:
	    cv2.circle(photo, p1, 1, roi_red, 5)
	    cv2.circle(photo, p2, 1, roi_red, 5)
	    cv2.circle(photo, p3, 1, roi_red, 5)
	    cv2.circle(photo, p4, 1, roi_red, 5)
	
	    center = (int((p1[0] + p3[0]) / 2), int((p2[1] + p4[1]) / 2))
	    cv2.circle(photo, center, 1, roi_green, 5)
c 复制代码
def slopeAngle(p1, p2):
    slope  = (p2[1] - p1[1]) / (p2[0] - p1[0])
    theta  = np.arctan(slope)
    degree = int(theta * 57.29577) % 360
    return theta

def lineByPoint(photo, pp, theta, length, color, thickness):
    if True:
        p1 = (
            int(pp[0] - length * math.cos(theta)),
            int(pp[1] - length * math.sin(theta))
        )
c 复制代码
     center = (int((p1[0] + p3[0]) / 2), int((p2[1] + p4[1]) / 2))
     if not True:
         cv2.circle(photo, p1, 1, roi_blue,  5)
         cv2.circle(photo, p2, 1, roi_green, 5)
         cv2.circle(photo, p3, 1, roi_red,   5)
         cv2.circle(photo, p4, 1, roi_black, 5)
         cv2.circle(photo, center, 1, roi_green, 5)
     if True:
         crossLength = 15
         theta = slopeAngle(p1, p2)
         lineByPoint(photo, center, theta, crossLength, targetColor, targetThickness)
         theta = slopeAngle(p2, p3)
         lineByPoint(photo, center, theta, crossLength, targetColor, targetThickness)


Automatic Mask

c 复制代码
if True:
    matrix = np.array(cnt)
    for i in range(len(matrix)):
        matrix[i][0][0] = matrix[i][0][0] - x
        matrix[i][0][1] = matrix[i][0][1] - y
    mask = np.zeros(characteristic.shape[:2], dtype=np.uint8)
    mask = cv2.fillPoly(mask, [matrix], 255)
    cv2.imshow('Mask', mask)

    image = cv2.bitwise_and(characteristic, characteristic, mask = mask)
    image = stretch(image)
    cv2.imshow('Masked', image)
相关推荐
美狐美颜sdk2 小时前
跨平台直播美颜SDK集成实录:Android/iOS如何适配贴纸功能
android·人工智能·ios·架构·音视频·美颜sdk·第三方美颜sdk
DeepSeek-大模型系统教程3 小时前
推荐 7 个本周 yyds 的 GitHub 项目。
人工智能·ai·语言模型·大模型·github·ai大模型·大模型学习
郭庆汝3 小时前
pytorch、torchvision与python版本对应关系
人工智能·pytorch·python
小雷FansUnion5 小时前
深入理解MCP架构:智能服务编排、上下文管理与动态路由实战
人工智能·架构·大模型·mcp
资讯分享周5 小时前
扣子空间PPT生产力升级:AI智能生成与多模态创作新时代
人工智能·powerpoint
叶子爱分享6 小时前
计算机视觉与图像处理的关系
图像处理·人工智能·计算机视觉
鱼摆摆拜拜6 小时前
第 3 章:神经网络如何学习
人工智能·神经网络·学习
一只鹿鹿鹿6 小时前
信息化项目验收,软件工程评审和检查表单
大数据·人工智能·后端·智慧城市·软件工程
张较瘦_6 小时前
[论文阅读] 人工智能 | 深度学习系统崩溃恢复新方案:DaiFu框架的原位修复技术
论文阅读·人工智能·深度学习
cver1236 小时前
野生动物检测数据集介绍-5,138张图片 野生动物保护监测 智能狩猎相机系统 生态研究与调查
人工智能·pytorch·深度学习·目标检测·计算机视觉·目标跟踪