感知器算法

感知器是一种简单的机器学习算法,用于二元分类问题(即将数据分为两个类别)。它是人工神经网络的早期形式,由Frank Rosenblatt在1957年提出。感知器的主要思想是通过学习权重来分隔不同类别的数据点。

以下是感知器算法的基本步骤:

初始化权重(weights)和偏置(bias):开始时,将权重和偏置初始化为小的随机值或者零。

输入数据:将训练样本的特征输入感知器。

计算加权和:将输入特征与权重相乘,然后加上偏置,得到一个加权和。

加权和 = (特征1 × 权重1) + (特征2 × 权重2) + ... + 偏置

应用激活函数:通常,感知器使用一个阶跃函数(step function)或者符号函数(sign function)作为激活函数。如果加权和大于等于阈值(通常是零),则感知器输出为1,表示属于一类;否则,输出为0,表示属于另一类。

输出 = 1,如果加权和 >= 阈值

输出 = 0,如果加权和 < 阈值

更新权重和偏置:如果感知器的预测与实际标签不符,就需要更新权重和偏置,以减小错误。更新规则如下:

新权重 = 旧权重 + 学习率 × (实际标签 - 预测) × 输入特征

新偏置 = 旧偏置 + 学习率 × (实际标签 - 预测)

重复步骤2至步骤5,直到达到停止条件,例如达到一定的迭代次数或者误差达到可接受水平。

感知器算法是一个线性分类器,只能解决线性可分的问题,即数据可以通过一条直线或超平面进行分割。对于非线性问题,感知器无法收敛。然而,感知器的思想启发了后续更强大的神经网络算法的发展,如多层感知器(多层神经网络)和深度学习模型。

需要注意的是,感知器算法通常用于教育目的或作为理解神经网络的起点,而在实际应用中,更复杂的模型如支持向量机(SVM)或深度学习模型更常见。

相关推荐
fie88892 小时前
NSCT(非下采样轮廓波变换)的分解和重建程序
算法
晨晖22 小时前
单链表逆转,c语言
c语言·数据结构·算法
im_AMBER4 小时前
Leetcode 78 识别数组中的最大异常值 | 镜像对之间最小绝对距离
笔记·学习·算法·leetcode
鼾声鼾语4 小时前
matlab的ros2发布的消息,局域网内其他设备收不到情况吗?但是matlab可以订阅其他局域网的ros2发布的消息(问题总结)
开发语言·人工智能·深度学习·算法·matlab·isaaclab
LYFlied5 小时前
【每日算法】LeetCode 25. K 个一组翻转链表
算法·leetcode·链表
Swizard5 小时前
别再迷信“准确率”了!一文读懂 AI 图像分割的黄金标尺 —— Dice 系数
python·算法·训练
s09071365 小时前
紧凑型3D成像声纳实现路径
算法·3d·声呐·前视多波束
可爱的小小小狼5 小时前
算法:二叉树遍历
算法
d111111111d6 小时前
在STM32函数指针是什么,怎么使用还有典型应用场景。
笔记·stm32·单片机·嵌入式硬件·学习·算法
AI科技星6 小时前
质量定义方程常数k = 4π m_p的来源、推导与意义
服务器·数据结构·人工智能·科技·算法·机器学习·生活