OpenCV自学笔记十八:模板匹配

模板匹配是一种在图像中寻找指定模式的方法。OpenCV库提供了用于模板匹配的函数,可以帮助我们在图像中定位和识别特定的模式。下面是模板匹配的基础原理和一个示例:

模板匹配通过在待匹配图像上滑动一个固定大小的模板图像,并计算模板与图像之间的相似度来寻找匹配位置。相似度通常使用相关性或差异度量来衡量。在滑动过程中,当相似度达到最大值或阈值时,认为找到了一个匹配。

下面是一个使用OpenCV进行模板匹配的示例代码:

复制代码
​
import cv2

import numpy as np

import matplotlib.pyplot as plt

# 读取主图像和模板图像

img = cv2.imread('main_image.jpg', 0)

template = cv2.imread('template_image.jpg', 0)

# 进行模板匹配

result = cv2.matchTemplate(img, template, cv2.TM_CCOEFF_NORMED)

min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)

# 获取匹配位置

top_left = max_loc

bottom_right = (top_left[0] + template.shape[1], top_left[1] + template.shape[0])

# 在主图像上绘制矩形框

cv2.rectangle(img, top_left, bottom_right, 255, 2)

# 显示结果

plt.subplot(131), plt.imshow(img, cmap='gray')

plt.title('Original Image'), plt.xticks([]), plt.yticks([])

plt.subplot(132), plt.imshow(template, cmap='gray')

plt.title('Template Image'), plt.xticks([]), plt.yticks([])

plt.subplot(133), plt.imshow(result, cmap='gray')

plt.title('Matching Result'), plt.xticks([]), plt.yticks([])

plt.show()

​

在上述示例中,我们首先使用`cv2.imread()`函数读取主图像和模板图像,并将它们转换为灰度图像。

然后,使用`cv2.matchTemplate()`函数进行模板匹配。该函数接受三个参数:待匹配的主图像、模板图像和匹配方法。在本例中,我们使用了`cv2.TM_CCOEFF_NORMED`作为匹配方法。

接下来,使用`cv2.minMaxLoc()`函数获取匹配结果中的最大值位置。这对应于找到的最佳匹配位置。

然后,我们使用找到的匹配位置,在主图像上绘制矩形框。

最后,使用Matplotlib库的`plt.subplot()`和`plt.imshow()`函数显示原始图像、模板图像和匹配结果图像。

运行上述代码,你将看到显示了原始图像、模板图像和匹配结果的窗口。匹配结果中的矩形框表示找到的最佳匹配位置。

相关推荐
机器觉醒时代1 分钟前
“干活”机器人“教练”登场:宇树机器人推出首款轮式机器人G1-D
人工智能·机器学习·机器人·人形机器人
QTreeY1235 分钟前
detr目标检测+deepsort/strongsort/bytetrack/botsort算法的多目标跟踪实现
人工智能·算法·yolo·目标检测·计算机视觉·目标跟踪
only-code8 分钟前
Provable Robust Watermarking for AI-Generated Text:给大模型文字“打上隐形指纹”
人工智能·ai大模型·论文解读·ai检测·文本检测
弘毅 失败的 mian8 分钟前
编译和链接
c语言·经验分享·笔记·编程入门
编程小白_正在努力中12 分钟前
第四章深度解析:智能体经典范式实战指南——从ReAct到Reflection的全流程拆解
人工智能·agent·智能体
创思通信12 分钟前
基于K210的人脸识别开锁
人工智能·yolo·人脸识别·k210
xuehaikj16 分钟前
基于RetinaNet的建筑设计师风格识别与分类研究_1
人工智能·数据挖掘
workpieces19 分钟前
从设计资产到生产代码:构建组件一致性的自动化闭环
人工智能
谢大旭34 分钟前
Clip模型与Vit模型的区别?
人工智能
GoldenSpider.AI38 分钟前
什么是AI?AI新手终极指南(2025)
人工智能