OpenCV自学笔记十八:模板匹配

模板匹配是一种在图像中寻找指定模式的方法。OpenCV库提供了用于模板匹配的函数,可以帮助我们在图像中定位和识别特定的模式。下面是模板匹配的基础原理和一个示例:

模板匹配通过在待匹配图像上滑动一个固定大小的模板图像,并计算模板与图像之间的相似度来寻找匹配位置。相似度通常使用相关性或差异度量来衡量。在滑动过程中,当相似度达到最大值或阈值时,认为找到了一个匹配。

下面是一个使用OpenCV进行模板匹配的示例代码:

​
import cv2

import numpy as np

import matplotlib.pyplot as plt

# 读取主图像和模板图像

img = cv2.imread('main_image.jpg', 0)

template = cv2.imread('template_image.jpg', 0)

# 进行模板匹配

result = cv2.matchTemplate(img, template, cv2.TM_CCOEFF_NORMED)

min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)

# 获取匹配位置

top_left = max_loc

bottom_right = (top_left[0] + template.shape[1], top_left[1] + template.shape[0])

# 在主图像上绘制矩形框

cv2.rectangle(img, top_left, bottom_right, 255, 2)

# 显示结果

plt.subplot(131), plt.imshow(img, cmap='gray')

plt.title('Original Image'), plt.xticks([]), plt.yticks([])

plt.subplot(132), plt.imshow(template, cmap='gray')

plt.title('Template Image'), plt.xticks([]), plt.yticks([])

plt.subplot(133), plt.imshow(result, cmap='gray')

plt.title('Matching Result'), plt.xticks([]), plt.yticks([])

plt.show()

​

在上述示例中,我们首先使用`cv2.imread()`函数读取主图像和模板图像,并将它们转换为灰度图像。

然后,使用`cv2.matchTemplate()`函数进行模板匹配。该函数接受三个参数:待匹配的主图像、模板图像和匹配方法。在本例中,我们使用了`cv2.TM_CCOEFF_NORMED`作为匹配方法。

接下来,使用`cv2.minMaxLoc()`函数获取匹配结果中的最大值位置。这对应于找到的最佳匹配位置。

然后,我们使用找到的匹配位置,在主图像上绘制矩形框。

最后,使用Matplotlib库的`plt.subplot()`和`plt.imshow()`函数显示原始图像、模板图像和匹配结果图像。

运行上述代码,你将看到显示了原始图像、模板图像和匹配结果的窗口。匹配结果中的矩形框表示找到的最佳匹配位置。

相关推荐
果冻人工智能11 分钟前
2025 年将颠覆商业的 8 大 AI 应用场景
人工智能·ai员工
代码不行的搬运工12 分钟前
神经网络12-Time-Series Transformer (TST)模型
人工智能·神经网络·transformer
石小石Orz14 分钟前
Three.js + AI:AI 算法生成 3D 萤火虫飞舞效果~
javascript·人工智能·算法
孤独且没人爱的纸鹤23 分钟前
【深度学习】:从人工神经网络的基础原理到循环神经网络的先进技术,跨越智能算法的关键发展阶段及其未来趋势,探索技术进步与应用挑战
人工智能·python·深度学习·机器学习·ai
阿_旭26 分钟前
TensorFlow构建CNN卷积神经网络模型的基本步骤:数据处理、模型构建、模型训练
人工智能·深度学习·cnn·tensorflow
羊小猪~~27 分钟前
tensorflow案例7--数据增强与测试集, 训练集, 验证集的构建
人工智能·python·深度学习·机器学习·cnn·tensorflow·neo4j
极客代码34 分钟前
【Python TensorFlow】进阶指南(续篇三)
开发语言·人工智能·python·深度学习·tensorflow
zhangfeng113334 分钟前
pytorch 的交叉熵函数,多分类,二分类
人工智能·pytorch·分类
Seeklike35 分钟前
11.22 深度学习-pytorch自动微分
人工智能·pytorch·深度学习
庞传奇36 分钟前
TensorFlow 的基本概念和使用场景
人工智能·python·tensorflow