大模型:如何利用旧的tokenizer训练出一个新的来?

背景:

我们在用chatGPT或者SD的时候,发现如果使用英语写提示词得到的结果比我们使用中文得到的结果要好很多,为什么呢?这其中就有一个叫做tokenizer的东西在作怪。

训练一个合适的tokenizer是训练大模型的基础,我们既可以从头开始训练一个全新的tokenizer,也可以利用旧的tokenizer训练出一个新的来,今天就让我们看看如何来以旧换新。

第一步:数据准备

不管是训练大模型,还是训练tokenizer,首先都需要我们准备数据集:

python 复制代码
from datasets import load_dataset
#加载数据集
raw_datasets = load_dataset("code_search_net", "python")

#写一个迭代函数,分配加载数据,防止数据集太大导致内存溢出
def get_training_corpus():
    return (
        raw_datasets["train"][i : i + 1000]["whole_func_string"]
        for i in range(0, len(raw_datasets["train"]), 1000)
    )


training_corpus = get_training_corpus()

第二步:训练

python 复制代码
#加载旧的tokenizer
old_tokenizer = AutoTokenizer.from_pretrained("gpt2")
#进行训练
tokenizer = old_tokenizer.train_new_from_iterator(training_corpus, 52000)

第三步:保存

python 复制代码
tokenizer.save_pretrained("code-search-net-tokenizer")

第四步:使用

python 复制代码
tokenizer = AutoTokenizer.from_pretrained("huggingface-course/code-search-net-tokenizer")

总结:

1、利用AutoTokenizer.train_new_from_iterator()可以很轻松的使用我们自己的数据集来根据旧的tokenizer来训练出一个全新的tokenizer

2、如果我们需要的语言中没有可用的大语言模型,或者我们要预测的数据集与我们选择的大语言模型训练的数据集非常不同,我们就需要使用适合我们的数据的tokenizer从头开始重新训练模型。

相关推荐
Blossom.1181 小时前
使用Python实现简单的人工智能聊天机器人
开发语言·人工智能·python·低代码·数据挖掘·机器人·云计算
科技小E1 小时前
EasyRTC嵌入式音视频通信SDK打造带屏IPC全场景实时通信解决方案
人工智能·音视频
ayiya_Oese1 小时前
[模型部署] 3. 性能优化
人工智能·python·深度学习·神经网络·机器学习·性能优化
仙人掌_lz1 小时前
机器学习与人工智能:NLP分词与文本相似度分析
人工智能·机器学习·自然语言处理
jndingxin2 小时前
OpenCV CUDA模块中矩阵操作------归一化与变换操作
人工智能·opencv
ZStack开发者社区2 小时前
云轴科技ZStack官网上线Support AI,智能助手助力高效技术支持
人工智能·科技
每天都要写算法(努力版)2 小时前
【神经网络与深度学习】通俗易懂的介绍非凸优化问题、梯度消失、梯度爆炸、模型的收敛、模型的发散
人工智能·深度学习·神经网络
Blossom.1182 小时前
Web3.0:互联网的去中心化未来
人工智能·驱动开发·深度学习·web3·去中心化·区块链·交互
kyle~2 小时前
计算机视觉---目标检测(Object Detecting)概览
人工智能·目标检测·计算机视觉
hao_wujing2 小时前
YOLOv8在单目向下多车辆目标检测中的应用
人工智能·yolo·目标检测