大模型:如何利用旧的tokenizer训练出一个新的来?

背景:

我们在用chatGPT或者SD的时候,发现如果使用英语写提示词得到的结果比我们使用中文得到的结果要好很多,为什么呢?这其中就有一个叫做tokenizer的东西在作怪。

训练一个合适的tokenizer是训练大模型的基础,我们既可以从头开始训练一个全新的tokenizer,也可以利用旧的tokenizer训练出一个新的来,今天就让我们看看如何来以旧换新。

第一步:数据准备

不管是训练大模型,还是训练tokenizer,首先都需要我们准备数据集:

python 复制代码
from datasets import load_dataset
#加载数据集
raw_datasets = load_dataset("code_search_net", "python")

#写一个迭代函数,分配加载数据,防止数据集太大导致内存溢出
def get_training_corpus():
    return (
        raw_datasets["train"][i : i + 1000]["whole_func_string"]
        for i in range(0, len(raw_datasets["train"]), 1000)
    )


training_corpus = get_training_corpus()

第二步:训练

python 复制代码
#加载旧的tokenizer
old_tokenizer = AutoTokenizer.from_pretrained("gpt2")
#进行训练
tokenizer = old_tokenizer.train_new_from_iterator(training_corpus, 52000)

第三步:保存

python 复制代码
tokenizer.save_pretrained("code-search-net-tokenizer")

第四步:使用

python 复制代码
tokenizer = AutoTokenizer.from_pretrained("huggingface-course/code-search-net-tokenizer")

总结:

1、利用AutoTokenizer.train_new_from_iterator()可以很轻松的使用我们自己的数据集来根据旧的tokenizer来训练出一个全新的tokenizer

2、如果我们需要的语言中没有可用的大语言模型,或者我们要预测的数据集与我们选择的大语言模型训练的数据集非常不同,我们就需要使用适合我们的数据的tokenizer从头开始重新训练模型。

相关推荐
深度学习实战训练营35 分钟前
基于CNN-RNN的影像报告生成
人工智能·深度学习
昨日之日20063 小时前
Moonshine - 新型开源ASR(语音识别)模型,体积小,速度快,比OpenAI Whisper快五倍 本地一键整合包下载
人工智能·whisper·语音识别
浮生如梦_3 小时前
Halcon基于laws纹理特征的SVM分类
图像处理·人工智能·算法·支持向量机·计算机视觉·分类·视觉检测
深度学习lover3 小时前
<项目代码>YOLOv8 苹果腐烂识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·苹果腐烂识别
热爱跑步的恒川4 小时前
【论文复现】基于图卷积网络的轻量化推荐模型
网络·人工智能·开源·aigc·ai编程
阡之尘埃6 小时前
Python数据分析案例61——信贷风控评分卡模型(A卡)(scorecardpy 全面解析)
人工智能·python·机器学习·数据分析·智能风控·信贷风控
孙同学要努力8 小时前
全连接神经网络案例——手写数字识别
人工智能·深度学习·神经网络
Eric.Lee20218 小时前
yolo v5 开源项目
人工智能·yolo·目标检测·计算机视觉
其实吧39 小时前
基于Matlab的图像融合研究设计
人工智能·计算机视觉·matlab
丕羽9 小时前
【Pytorch】基本语法
人工智能·pytorch·python